1	BEFORE THE PUBLIC SERVICE COMMISSION	
2	OF SOUTH CAROLINA	
3	COLUMBIA, SOUTH CAROLINA	
4	PROCEEDING #18-11715 MARCH 29, 2018 10:39 AM	
5	ALLOWABLE EX PARTE BRIEFING - ND 2018-9-E DUKE ENERGY CAROLINAS, LLC AND DUKE ENERGY PROGRESS, LLC	
6		
7	TRANSCRIPT OF ALLOWABLE PROCEEDINGS EX PARTE BRIEFING	
8	COMMISSIONER MEMBERS PRESENT:	
9		
10	SWAIN E. WHITFIELD, CHAIRMAN COMER H. "RANDY" RANDALL, VICE CHAIRMAN JOHN E. "BUTCH" HOWARD	
11	ELIZABETH B. "LIB" FLEMING	
12	G. O'NEAL HAMILTON ROBERT T. "BOB" BOCKMAN ELLIOTT F. ELAM, JR.	
13	ADVISOR TO COMMISSION: Joseph Melchers, Esq.	
14	General Counsel STAFF:	
15	F. David Butler, Esq., Senior Counsel;	
16	James Spearman, Ph.D., Executive Assistant to Commissioners; Josh Minges, Esq., and David W.	
17	Stark, III, Esq., Legal Advisory Staff; Douglas K. Pratt, Thomas Ellison, and John Powers, Technical	
18	Advisory Staff; Afton Ellison, Clerk's Staff; and Hope Adams and Calvin Woods, Hearing Room	
19	Assistants.	
20	REPORTED BY: TERRI L. BRUSSEAU, RPR, CRR	
21	A. WILLIAM ROBERTS, JR., & ASSOCIATES	
22	Fast, Accurate & Friendly	
23	Charleston, SC Hilton Head, SC Myrtle Beach, SC (843) 722-8414 (843) 785-3263 (843) 839-3376	
24	Columbia, SC Greenville, SC Charlotte, NC	
25	(803) 731-5224 (864) 234-7030 (704) 573-3919	

1	LOCATION:	Public Service Commission of SC 101 Executive Center Drive Columbia, SC	
4		COTUMDIA, SC	
3	PANEL:	GARY FREEMAN, Duke Energy General Manager, Renewables Compliance,	
4		Origination, and Operations	
5		GLEN SNIDER, Duke Energy Director, Resource Planning and	
6		Analytics - Carolinas	
7		BRETT BREITSCHWERDT, Partner McGuire Woods, LLP	
8			
9		FRANK ELLERBE, Member Sowell, Gray, Robinson, Stepp & Lafitte, LLC	
10		beepp a harrete, hhe	
11	ALSO PRESENT:		
12		Jenny R. Pittman, Esquire, representing the South Carolina Office of Regulatory Staff	
13			
14		Rebecca Dulin, Senior Counsel, representing Duke Energy	
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

- 1 PROCEEDINGS
- 2 CHAIRMAN WHITFIELD: Please be seated.
- 3 I will call this allowable ex parte to order and
- 4 ask our attorney, Mr. Melchers, to read the docket.
- 5 MR. MELCHERS: Thank you, Mr. Chairman.
- 6 Commissioners, we are here today
- 7 pursuant to a Notice of Request for Allowable Ex
- 8 Parte Communication Briefing. And the date and
- 9 time of the briefing is today, March 29th, 2018,
- 10 10:30. The hearing is in the Commission Hearing
- 11 Room. And the parties requesting the briefing are
- 12 Duke Energy Carolinas, LLC and Duke Energy
- 13 Progress, LLC, and they will be discussing
- 14 developments in solar power production in
- 15 South Carolina.
- Thank you, Mr. Chairman.
- 17 CHAIRMAN WHITFIELD: Thank you,
- 18 Mr. Melchers.
- 19 I will now turn it over to the
- 20 South Carolina Office of Regulatory Staff.
- 21 Miss Pittman, I'm sorry, I couldn't see you behind
- 22 the podium back there.
- MS. PITTMAN: I was hiding from you.
- 24 CHAIRMAN WHITFIELD: Okay.
- MS. PITTMAN: Good morning, you all.

- 1 Thank you, Mr. Chairman. My name is Jenny Pittman
- 2 and I am a staff attorney for the Office of
- 3 Regulatory Staff. And I am here today as the
- 4 designee of our executive director for this ex
- 5 parte hearing. As ORS representative, it is my
- 6 duty to certify the record of this proceeding to
- 7 the chief clerk of the Public Service Commission
- 8 within the next 72 hours and verify that this
- 9 briefing was conducted in compliance with
- 10 provisions of SC Code Section 58-3-260(C).
- 11 The requirements of that statute are in
- 12 part that the allowable ex parte be confined to the
- 13 subject matter which has been noticed, which in
- 14 this case is -- has been noticed Developments in
- 15 Solar Power Production in South Carolina. I
- 16 therefore ask that the presenters, Commissioners
- 17 and staff all please refrain from discussing any
- 18 matters not related to this specific topic.
- 19 Secondly, this statute prohibits any
- 20 participants, Commissioners or Commission staff
- 21 from requesting or giving any commitment,
- 22 prediction or predetermination regarding any action
- 23 by any Commissioner as to any issue which either is
- 24 before or is likely to come before the Commission.
- 25 Third, I would ask that the participants,

- 1 Commissioners and staff refrain from referencing
- 2 any reports, articles, statutes or documents that
- 3 are not included in today's presentation. A copy
- 4 of any document which is referenced during the
- 5 briefing today must be provided to me for inclusion
- 6 in the record which I will certify to Miss Boyd.
- 7 Finally, everyone in attendance today
- 8 must read and sign and return the form which you
- 9 were given at the door when you came in and also
- 10 sign in as well. The form must be signed by each
- 11 attendee to certify that the requirements contained
- in 58-3-260(C) have been complied with at this
- 13 presentation.
- 14 Thank you all for your time and
- 15 attention.
- Thank you, Mr. Chairman.
- 17 CHAIRMAN WHITFIELD: Thank you,
- 18 Miss Pittman. And welcome to this allowable ex
- 19 parte. And I would ask again that you comply with
- 20 all the ground rules that Miss Pittman laid out and
- 21 that everyone present please sign the sheets as she
- 22 requested. And with that, I will turn it over to
- 23 Miss Dulin.
- MS. DULIN: Thank you, Mr. Chairman,
- 25 members of the Commission.

- 2 counsel for Duke Energy Carolinas and Duke Energy
- 3 Progress. We are pleased to be before you today to
- 4 talk about a topic that is very important to the
- 5 companies, and that is our experience in solar
- 6 development.
- 7 I'll go ahead and introduce to you our
- 8 panel at this time and they will give you a little
- 9 more context for their roles at the time when they
- 10 are speaking. But I have with me today Gary
- 11 Freeman, who is with Duke Energy, and he is our
- 12 general manager of renewables compliance,
- 13 origination, and operations.
- 14 And after that you will hear from Glen
- 15 Snider. Glen is an employee of the company, and he
- 16 is our director of resource planning and analytics
- 17 for the Carolinas.
- 18 After Glen, you will hear from Brett
- 19 Breitschwerdt, and he is an attorney with McGuire
- 20 Woods.
- 21 Finally, you will hear from Mr. Frank
- 22 Ellerbe.
- 23 And Commissioners, I apologize. I've
- 24 flipped the names. We will be going in order --
- 25 from where you're seated, we will begin on the

- 1 right and go over to the left. So following
- 2 Mr. Snider will be Mr. Ellerbe, and he is with the
- 3 firm of Sowell, Gray, Robinson, Stepp & Lafitte.
- 4 And to complete then the panel will be
- 5 Mr. Breitschwerdt after Mr. Ellerbe.
- 6 We appreciate the Commission's
- 7 willingness to have these four individuals on one
- 8 panel today. And I have impressed upon them the
- 9 importance of not speaking over one another and not
- 10 speaking over the Commissioners, so I would urge my
- 11 panelists to please keep that in mind.
- 12 Finally, we have attorneys today who
- 13 are presenting before you not in their role as
- 14 attorneys but in their role as subject matter
- 15 experts, so please keep that in mind as well.
- 16 And if there's nothing further from the
- 17 Chairman, then I will call the panel to come
- 18 forward.
- 19 CHAIRMAN WHITFIELD: Yes, Miss Dulin,
- 20 we will let them present. And as you mentioned,
- 21 out of courtesy to our court reporter, we are going
- 22 to hold questions until each of them have finished
- 23 their presentations to try to avoid anyone talking
- 24 over anyone. And we're going to try to hold
- 25 questions and let them -- you can start them in

- 1 whatever order you choose, but we are going to hold
- 2 questions until they're done.
- 3 MS. DULIN: That's fine. And thank
- 4 you, Mr. Chairman. And I apologize for the
- 5 confusion in the order, but we will begin on your
- 6 right with Mr. Freeman and make our way to the
- 7 left. So thank you very much and I'll turn it over
- 8 to Mr. Freeman at this time.
- 9 CHAIRMAN WHITFIELD: Thank you,
- 10 Miss Dulin.
- 11 MR. FREEMAN: Thank you, Chairman
- 12 Whitfield, fellow Commissioners, for letting us
- 13 come before you and share some of our experiences
- 14 with developing solar power in the state.
- 15 Again, my name is Gary Freeman. Just
- 16 to kind of add to my responsibilities, my primary
- 17 responsibilities are twofold. One is to support
- 18 and coordinate all the transmission and
- 19 distribution interconnections to our grid.
- 20 And then second, our team works with
- 21 all of our third-party developers to negotiate and
- 22 execute third-party power purchase agreements with
- 23 those facilities.
- 24 So what I want to do, I want to start
- 25 first with this title slide and just highlight a

- 1 real neat success that we've had just recently.
- 2 This is a picture of an elementary stool in Rock
- 3 Hill. And two weeks ago, Duke Energy helped, as I
- 4 call it, to flip the switch with students and
- 5 teachers to commemorate this school's solar system.
- 6 It's a 230 KW solar installation. It's the largest
- 7 installation that we've completed so far in the
- 8 state with any of our schools.
- 9 Duke provided a 280,000 dollar rebate
- 10 to the school to support the development of this
- 11 project. And to date, Duke has contributed over 50
- 12 million dollars in rebates as part of the
- 13 South Carolina Act 236 legislation. So I just
- 14 wanted to kind of highlight a recent success.
- Next, you heard the developers say when
- 16 they were here with their ex parte briefing that
- 17 they plan to invest 5 billion dollars in solar
- 18 projects. On this slide, I just want to remind the
- 19 Commission that Duke's made a huge impact in the
- 20 state as well. The annual economic impact of Duke
- 21 Energy in the state totals over 6 billion dollars.
- 22 And that 6 billion dollars represents all goods and
- 23 services produced that can be attributed both
- 24 directly and indirectly to Duke Energy in our
- 25 investments in the state. This impact equates to

- 1 over 15,000 jobs and almost a billion dollars in
- 2 labor income that would not otherwise exist. Duke
- 3 has also provided South Carolina for decades, you
- 4 know, service. It has a deep history of investment
- 5 in the state.
- 6 Recently or ongoing, Duke continues to
- 7 be recognized as one of the top ten utility
- 8 companies in promoting economic development. So
- 9 since 2005, Duke and their economic development
- 10 team has supported over 12 billion dollars worth of
- 11 new customer investment in the state. That equates
- 12 to over 32,000 jobs in the state.
- 13 If you look over on the right, the
- 14 point we've highlighted here is that 2017 was an
- 15 extremely successful year where Duke has helped
- 16 contribute through economic development 1.6 billion
- 17 dollars of new investment, which equates to almost
- 18 2600 new jobs in the state.
- 19 On this slide you heard developers say
- 20 that they have experience in 31 states. As you can
- 21 see, most states still have very little solar
- 22 development. So Duke utilities operates in six
- 23 states and has one of the deepest solar experiences
- 24 in the country.
- Duke is not only a utility charged with

- 1 integrating new generation onto the grid, but also
- 2 Duke is a project developer and owner of dozens of
- 3 solar projects inside and outside of our service
- 4 territories.
- 5 As you can see, North Carolina is where
- 6 Duke has seen one of the fastest surges in solar
- 7 development in the country. And as the bullet
- 8 suggests on the right or the statement on the right
- 9 suggests South Carolina is also growing rapidly in
- 10 solar development.
- 11 As our panel goes through our
- 12 presentation, I'd like you to keep in mind these
- 13 four -- or hope you will keep in mind these four
- 14 considerations.
- The first point, you know, most states
- 16 are moving to a market-driven approach for
- 17 renewable procurement. Competitively procured
- 18 solar resources ensure consumers are receiving the
- 19 best possible value for incremental solar
- 20 development.
- 21 Second point, South Carolina so far has
- 22 been very thoughtful in the pace of development and
- 23 this has had a positive impact on cost to
- 24 consumers.
- 25 The third point around reliable

- 1 service, we all have a responsibility for ensuring
- 2 reliability is maintained. At Duke, we take
- 3 this -- the process of interconnecting solar
- 4 generation or any generation to the grid very
- 5 seriously. We don't want to be like some other
- 6 states, for example like Hawaii, where Hawaii, with
- 7 their extreme solar penetration, they blacked out
- 8 the island of Oahu twice in recent years from the
- 9 loss of significant solar.
- 10 Hawaii is also experiencing some
- 11 challenges with residential customers where they're
- 12 experiencing high voltage at the residence.
- 13 They're working through these issues but this is
- 14 part of a -- kind of a living and learning kind of
- 15 theme that I'm going to kind of reinforce several
- 16 times through my presentation.
- 17 Even in California recently, California
- 18 lost a thousand megawatts of solar and California
- 19 struggled to maintain reliability through that
- 20 pretty significant event.
- 21 So we not only look at impacts on our
- 22 distribution system, we also look at impacts on
- 23 transmission system. And as you'll hear later in
- 24 our presentation, we even look at impacts on our
- 25 generation system as well.

- 1 And the last point here, we are here to
- 2 serve our electric consumers and ensure that we're
- 3 creating sustainable value for our customers. And
- 4 one of the things we're going to talk about later
- 5 is the PURPA QF contract and how that if not done
- 6 correctly can have impacts on consumers and
- 7 consumer rates.
- 8 So first I want to talk about
- 9 interconnections. On this slide I want to show you
- 10 that Duke has had a lot of success interconnecting
- 11 the small and medium solar projects. These two
- 12 graphs show that Duke has connected over 4300 solar
- 13 projects in the last two years. This represents
- 14 over 70 megawatts of new solar projects again in
- 15 the last two years.
- The graph on the left represents
- 17 projects that are typically residential and small
- 18 commercial rooftop solar projects. The blue bar
- 19 shows projects that have been connected. The
- 20 yellow bar represents projects that are in the
- 21 process of being connected.
- The graph on the right represents
- 23 medium-sized projects. These are all larger
- 24 commercial industrial projects that in most cases
- 25 are owned or operated by the customer and most are

- 1 net metering facilities. Again here, the blue
- 2 represents projects connected, yellow are projects
- 3 that are still in progress, and the dark blue
- 4 represents projects that have withdrawn. And
- 5 withdrawals can occur for many different reasons.
- 6 The reason for our success here is that
- 7 most of these projects are located in an existing
- 8 customer location and they have much less of an
- 9 impact on the grid; and therefore, the studies
- 10 needed for these projects are much, much less
- 11 complex.
- 12 This slide represents the backlog of
- 13 large-scale projects on the distribution system.
- 14 You heard from the developers that the backlog and
- 15 study times have not improved, and we agree.
- 16 The second bullet points out Duke has
- 17 been on the leading edge of large-scale solar being
- 18 connected to the distribution system. Later in our
- 19 panel we will show just how unique that large-scale
- 20 projects on distribution system have been compared
- 21 to all other states. This is the concept of the
- 22 living laboratory. And what I mean by the living
- 23 laboratory is we are learning as we go.
- 24 With my remaining slides, I hope to
- 25 help you understand the challenges that we've had

- 1 with these size projects. You can see here by the
- 2 bars that the surge in project proposals occurred
- 3 in 2015 in South Carolina, and more precisely the
- 4 bar represents projects that came into our queue in
- 5 the September/October time frame. And this was
- 6 tied to our Act 236 RFP to support Durr compliance.
- 7 I'll explain on another slide why this late 2015
- 8 date or dates are important and how these projects
- 9 have been indirectly impacted by power quality
- 10 issues that Duke has seen in other areas and also
- 11 is based on issues and learnings that we've seen
- 12 from other states.
- I do want to point you to the yellow,
- 14 which is good. These are projects that are under
- 15 construction and we should see the yellow
- 16 increasing this year. The orange represents our
- 17 challenge. The dark blue again represents projects
- 18 that have withdrawn for many reasons. These could
- 19 be permitting issues, cost, financing, and any
- 20 number of other issues.
- 21 Duke has also successfully contracted
- 22 for the South Carolina Durr Tier 1 program in the
- 23 DEP service territory and we expect those projects
- 24 to come on line this year.
- 25 On this slide I want to highlight three

- 1 examples that support Duke's living laboratory
- 2 concept. The first occurred in 2012 with a 4
- 3 megawatt project connected to an old DEC 44 KB
- 4 system and almost immediately began seeing voltage
- 5 issues and customer complaints.
- 6 So to make a long story short, Duke
- 7 tried several different solutions but finally
- 8 committed to upgrade the grid in this location and
- 9 then spent roughly 11 million dollars to solve the
- 10 complaint generated from one solar project
- 11 connected to a very weak part of our system. Our
- 12 study process at this time just didn't predict this
- 13 problem.
- 14 The second example was what I referred
- 15 to as our real wake-up call. From within a month
- or so of energizing a large project on
- 17 distribution, Campbell's Soup began experiencing
- 18 outages at their plant. The February 2016 date
- 19 reference is important because this was shortly
- 20 after we saw the surge in South Carolina and we had
- 21 not finished any interconnection studies at that
- 22 time.
- This was a 20 megawatt solar project
- 24 connected to a weak rural part of our system and we
- 25 realized we had gone too far with what we could

- 1 support on the distribution system. To reinforce
- 2 this point, we would not connect up a 20 megawatt
- 3 industrial customer in this location without
- 4 requiring that connection be made on the
- 5 transmission system.
- 6 The third example here is in
- 7 South Carolina, this is our Olanta substation.
- 8 I'll describe the situation more on another slide,
- 9 but the message here is way too much generation
- 10 proposed in this location. There's roughly eight
- 11 times more project megawatts proposed at this
- 12 substation than either the substation or the
- 13 transmission can accommodate.
- 14 So on this slide I want to go into a
- 15 little more detail on Campbell's Soup. First, the
- 16 interconnection standards provide utilities the
- 17 flexibility to modify technical standards and study
- 18 processes as needed to ensure power quality is
- 19 maintained for any type of interconnection. Our
- 20 obligation is to ensure the customers in generation
- 21 live in harmony with each other and this harmony
- 22 lasts for decades. When we make a commitment to an
- 23 interconnection, we're assuming that that
- 24 interconnection is with us for a very, very long
- 25 time.

- 1 So shortly after diagnosing the
- 2 problems at Campbell's Soup, we did step back from
- 3 our study process to reevaluate the effectiveness
- 4 of our current study processes. This reevaluation
- 5 led in June of 2016 to a circuit stiffness review,
- 6 and with extensive stakeholder participation some
- 7 modifications were made to this review and we
- 8 finalized that in late 2016.
- 9 Duke then worked with developers to
- 10 implement these changes, which took another six
- 11 months to integrate into the study process. My
- 12 point here is that these changes and several other
- 13 guideline changes have slowed the study process
- 14 down significantly. But as the third bullet
- 15 suggests, our goal was to take the time to develop
- 16 yes solutions for these interconnections.
- 17 The other key message here is that the
- 18 North Carolina Utilities Commission did review the
- 19 service quality issues that Duke was experiencing
- 20 and the proposed solutions. And as you can see or
- 21 read, agreed that Duke was taking appropriate steps
- 22 to ensure electric service to retail customers is
- 23 not degraded due to operations of newly
- 24 interconnected generation facilities. It's
- 25 examples like this that create delays that we think

- 1 are justified.
- 2 This is the Olanta substation that I
- 3 referenced earlier. This is what I refer to as a
- 4 poster child substation, along with several others
- 5 that have influenced the need to adopt more
- 6 prescriptive project-sized guidelines and limit the
- 7 amount of cumulative generation being connected to
- 8 a circuit or to the substation. This shows how the
- 9 lack of interconnection guidelines can create
- 10 unrealistic expectations for developers. Almost
- 11 every one of these projects exceeds the entire
- 12 customer load on the substation. There isn't any
- 13 way possible that Duke can interconnect this much
- 14 generation without making significant investments
- in the grid which need to be paid by someone.
- 16 But under the interconnection standards
- 17 and based on Duke's FERC obligations, Duke is
- 18 required to invest the time necessary to develop
- 19 solutions for these projects that will clearly not
- 20 be cost-effective for the project to be
- 21 constructed.
- So, for example, we have been working
- 23 with the first project in line here since the
- 24 middle of 2016. It's a 15 megawatt project and
- 25 exceeds the load on the entire substation. And

- 1 between the developer and Duke, we have not yet
- 2 found a workable solution for this project. It
- 3 holds up all other projects in this particular
- 4 location.
- 5 Also notice that there are 12 projects
- 6 on the same circuit represented by the pink line.
- 7 There are also five projects in the upper right --
- 8 upper left-hand corner that are about five miles
- 9 from the substation. These are on the same piece
- of property, add up to 50 megawatts, and the only
- 11 possible path for these projects is to build
- 12 roughly a 5-mile new transmission line over to the
- 13 right bluish line that represents the existing
- 14 transmission line. And building a new transmission
- 15 is always a significant challenge.
- 16 This slide summarizes our
- 17 implementation of technical screen and study
- 18 methods. We are working closely with developers to
- 19 mitigate the impacts of these new screens as much
- 20 as possible and are providing sizing options and
- 21 other solutions to allow projects to interconnect.
- 22 We have now assembled all these screens
- 23 and policies into one place. We have now committed
- 24 to a Carolinas technical stakeholder working group
- 25 to improve transparency and provide a means for

- 1 more collaboration. This first meeting is in two
- 2 weeks and the ORS is invited -- been invited to
- 3 this meeting.
- I also want to highlight the last
- 5 bullet here in reference to EPRI. Duke works
- 6 closely with EPRI and other industry groups. One
- 7 consistent message from them is the industry
- 8 standards, more testing, more field investigations
- 9 are needed to ensure appropriate integration of
- 10 renewable generation onto the grid and that is what
- 11 we are all learning -- that's the point about we
- 12 are all learning as we go. We also are hearing
- 13 from several other utilities that have or are
- 14 having power quality issues similar to the ones
- 15 that we have experienced.
- On this slide, these are pictures of
- 17 what I call interconnections gone wrong. I would
- 18 like to highlight, you know, this area that we --
- 19 we are working very closely with developers to
- 20 ensure proper construction and documentation of
- 21 solar facilities. These pictures show examples of
- 22 construction deficiencies and electrical faults
- 23 that in many cases have resulted in power quality
- 24 issues impacting other customers.
- The bottom left represents Campbell's

- 1 Soup. The bottom right destroyed an entire switch
- 2 cabinet. Duke now inspects every utility scale
- 3 project before approving operation and works with
- 4 developers to repair any of these deficiencies. So
- 5 as we continue to learn, one of the most concerning
- 6 things with a recent solar project is that it
- 7 failed a critical safety test four different times.
- 8 It's a new inverter manufacturer with a new
- 9 technology. So it's not a developer issue. We are
- 10 all working together to try and figure out what is
- 11 going wrong at this particular facility.
- 12 My last slide introduces the House Bill
- 13 589 Competitive Procurement Program. You heard the
- 14 developers comment on this in their presentation.
- 15 I will leave you with two comments here.
- 16 First, we all hope that South Carolina
- 17 projects will participate in the program and will
- 18 be successful in winning bids.
- 19 Second, I want to reinforce that Duke
- 20 will ensure that other South Carolina projects will
- 21 not be negatively impacted by this program. Our
- 22 panel will elaborate on this program later in our
- 23 presentation.
- 24 And that concludes my presentation, so
- 25 thank you very much. And I will now turn this over

- 1 to Glen Snider.
- 2 MR. SNIDER: Good morning, Chairman,
- 3 Mr. Commissioners, Miss Commissioner. Appreciate
- 4 the opportunity to appear before you today.
- 5 As Rebecca said, I am the director of
- 6 integrated resource planning and analytics.
- 7 Normally I appear before you on IRP-related issues,
- 8 but in my role I also have responsibility for the
- 9 development of our avoided cost rates and have
- 10 appeared as the evaluation witness in IRP and
- 11 avoided cost-related matters.
- 12 I'd like to talk to you today a little
- 13 bit about some of the PURPA implementation that
- 14 we've experienced over time and a lot of discussion
- 15 that's been taking place around the appropriate
- 16 implementation of QF rates and other
- 17 economic-related impacts of solar.
- 18 And starting with PURPA, the original
- 19 intent in PURPA was to provide a pathway for
- 20 independent power producers to put power onto
- 21 utilities grids, and that -- that private sector
- 22 pathway through PURPA had one central theme, and
- 23 that was to have -- -
- 24 CHAIRMAN WHITFIELD: Mr. Snider --
- 25 MR. SNIDER: Yes, sir.

- 1 CHAIRMAN WHITFIELD: -- I'm sorry.
- 2 I've just been informed we need to ask you to just
- 3 pause for a technical difficulty just for a minute.
- 4 MR. SNIDER: Certainly.
- 5 MR. MELCHERS: Trying to make sure
- 6 you've got the right materials for the job. We
- 7 think we probably got the day before yesterday this
- 8 PowerPoint up without the final tweaks that you all
- 9 did, so we're just going to have somebody switch it
- 10 out right now unless you've already seen --
- 11 MS. DULIN: Just to clarify,
- 12 Mr. Melchers, the version that was sent to
- 13 Miss Wheat earlier yesterday and not later
- 14 yesterday, we're fine with that.
- MR. MELCHERS: Okay. Let me verify
- 16 that that's the case.
- MS. DULIN: If your preference is to
- 18 switch it over, then we're happy to do that.
- 19 MS. WHEAT: I did not -- I only got one
- 20 from you. So that very first one that you sent is
- 21 the one I believe that's here.
- 22 CHAIRMAN WHITFIELD: Miss Dulin, let's
- 23 take about a five-minute recess.
- MS. WHEAT: I'm sorry.
- MS. DULIN: That's fine. Thank you.

- 1 (A recess transpired.)
- 2 CHAIRMAN WHITFIELD: I've been informed
- 3 that we're okay now. So, Mr. Snider, I apologize
- 4 for stopping you and please continue with your
- 5 presentation.
- 6 MR. SNIDER: Thank you, Chairman
- 7 Whitfield.
- 8 So as I was saying, PURPA, different
- 9 states implement PURPA rates using different
- 10 analytic methods and it can get, you know, very
- 11 confusing when you start hearing about peaker
- 12 method and differential revenue requirements and
- 13 all these complex methods for developing a PURPA
- 14 rate. But at the heart of them all is a very basic
- 15 concept that's an indifference principle.
- 16 It says when you put qualifying
- 17 facilities onto a grid, the consumer should be
- 18 indifferent from an economic perspective of
- 19 purchasing OF power versus the alternative it would
- 20 have purchased from a native utility had it just
- 21 bought power from the generators that the utility
- 22 has. So this indifference principle is at the
- 23 heart of all of the methods for evaluating PURPA
- 24 rates. And we'll talk more about that later.
- 25 And then finally, it needs to be

- 1 recognized that maybe 20 or 30 years ago, QF's,
- 2 that was the primary pathway for QF's to be
- 3 integrated into a power portfolio. Today as we've
- 4 seen, there are multiple other pathways, as
- 5 Mr. Freeman referenced Act 236, various renewable
- 6 portfolio standards. So there's other pathways
- 7 other than just QF rates to allow renewables to be
- 8 integrated into a power system.
- 9 There has been a lot of discussion
- 10 about the need to improve and update our QF rates.
- 11 We agree that they need to be updated. The company
- 12 is working and we'll be coming forward this year
- 13 with updated rates. The current rates we believe
- 14 today are above the value that's actually being
- 15 created, and so therefore that misalignment
- 16 requires that new rates be filed and we're working
- 17 towards that.
- 18 One of the other issues we think about
- 19 with -- and the reason it's so important to have
- 20 updated QF rates is that there is no volumetric
- 21 limit on the amount of QF's that take service under
- 22 a QF rate. So once that rate is being offered, as
- 23 many QF's that line up and ask to be connected at
- 24 that rate and then go through the process can be
- 25 connected. Unlike a utility that comes forth, they

- 1 say, here's a power plant, here's the size of it,
- 2 we're going to get a CT scan for this finite amount
- 3 of power. QF can come in any quantity as we saw in
- 4 the original graph with all the bubbles.
- 5 And why is that so important? Well, as
- 6 penetration increases of QF's, the incremental
- 7 value of the next one on line declines. And that's
- 8 true of any resource. The more you add of any one
- 9 resource at any point in time, the less valuable
- 10 the next increment of that resource becomes.
- 11 There's only a finite need for any type of
- 12 resource, whether it's a peaker or a combined cycle
- or wind or solar or biomass. The more that's
- 14 added, the less the next increments work. And so
- 15 the amount you get and the pace that Mr. Freeman
- 16 spoke about earlier is very important.
- 17 The other concept that gets spoken
- 18 about often is the term of QF rates, how long,
- 19 what's the right size of a QF rate. And I've heard
- 20 discussion that the longer, the better, because it
- 21 insulates customers from risk. We're going to talk
- 22 more about that in the next couple slides, but I
- 23 would have to disagree with that comment.
- 24 When you fix a price out into the
- 25 future, the longer that price is fixed, the more

- 1 uncertainty you have of what the market will really
- 2 look like 10, 15, 20 years down the road, so the
- 3 risk that it was accurately priced on Day 1 becomes
- 4 greater. We've all seen uncertainty bands. And
- 5 the further you go out in time, the greater the
- 6 risk there is.
- 7 That often leads to discussions around
- 8 what is the right term in terms of a contract or a
- 9 QF contract, especially within the construct of a
- 10 PURPA rate. And the longer the term, if you think
- 11 about it, what QF's are looking to do is to secure
- 12 their -- their revenue stream against their cost
- 13 structure, but then that transfers risk from the
- 14 equity and the debt over to the consumer who's
- 15 paying for it, so they are obligating a fixed price
- 16 into the future irrespective of the value created
- 17 at that point in the future.
- 18 So many -- you know, many of those
- 19 states are starting to recognize this, especially
- 20 in the southeast what you see within the context of
- 21 QF rates is while there is an obligation to take QF
- 22 power and there's an ever green rate in place,
- 23 prices are only fixed in states like Tennessee,
- 24 Alabama, Mississippi for one year and then the
- 25 following year they get reset based on the market

- 1 at that time.
- 2 In North Carolina, we used to have
- 3 15-year rates. They've gone now down to 10-year
- 4 rates for QF's, 1 megawatt and under. And also,
- 5 for anything above 1 megawatt in a negotiated QF,
- 6 so from 1 megawatt up to 80 megawatts, which is a
- 7 definition for qualifying facilities, the term is
- 8 limited to five years.
- 9 Currently South Carolina has ten years
- 10 for its QF's that are two megawatts and under for
- 11 us here in -- or at DEC and DEP. And that's in
- 12 line right now with what we're doing in North
- 13 Carolina, which is also a 10-year term except the
- 14 differences were 1 megawatt and under for that.
- There's also talk about risk and who
- 16 wears what risk when it comes to what happens at
- 17 the end of the term of a contract. I've heard
- 18 discussions about developers wear all the risk at
- 19 the end of a term. And again, I would tend to
- 20 disagree. They also have a lot of upside. If you
- 21 think about the difference in how utility assets
- 22 are recovered in the context of putting assets into
- 23 the energy portfolio, they are limited to a
- 24 regulated return on their nondepreciated book
- 25 balance.

- 1 And so if we put an asset in the rate
- 2 base and ten years from now it's 70 percent
- 3 depreciated, that 30 percent that's left is all
- 4 that goes into rates. A developer who is not
- 5 subject to cost plus ratemaking is able to put an
- 6 asset into rates -- into service and at the end of
- 7 a 5 or a 10-year contract reestablish or continue
- 8 to establish their rights as a QF and can get
- 9 garner well above whatever the book value is on
- 10 those assets. That doesn't -- the book value of
- 11 the assets never comes into play in a PURPA QF
- 12 contract. It's simply the utilities of what it
- 13 cost.
- 14 So there is definitely a difference
- 15 between the two, but it doesn't mean that they bear
- 16 all the risk. They also bear significant upside
- 17 that then becomes a cost for consumers at that
- 18 point in the future.
- 19 So again, this is -- I'll leave this as
- 20 a -- without -- in the interest of time without
- 21 going through all of these, but there are a lot of
- 22 changes happening in the industry. We're seeing --
- 23 you know, moving away where there are some that
- 24 argue we need to expand and make PURPA much more
- 25 broad. That's not the industry trend. It's moving

- 1 towards shorter-term contracts. This is especially
- 2 true in a declining cost structure. We talked
- 3 about the volumetric; the more you add, the less
- 4 the next increment is worth.
- 5 Well, if we truly believe solar costs
- 6 are declining, and we do, we've seen that, that's
- 7 good for all stakeholders, but you want to think
- 8 about that environment. If costs are going to be
- 9 30 percent lower five years from now, how does that
- 10 affect your thinking on pace of solar adoption
- 11 today if you recognize there's a finite means for
- 12 solar and you know you're going to have cheaper
- 13 solar costs three, four, five years down the road,
- 14 you want to be careful into how you incent the
- 15 development at a given point in time so that you
- 16 have ability to take advantage of lower costs in
- 17 the future.
- 18 We do think, you know, it's a very
- 19 important resource, it's a growing resource in our
- 20 mix. And again, if it's done at the right pace
- 21 that matches the economics and the need and as
- 22 Mr. Freeman talked about that we do it in a
- 23 thoughtful manner from integrating with the T and D
- 24 grid, but also in -- we need to think about it in
- 25 the way that it also affects our generation fleet

- 1 and how it gets integrated in with the rest of the
- 2 generation fleet.
- A lot of the challenges that are
- 4 currently out there with solar, there's promising
- 5 technology in batteries and energy storage that can
- 6 help to alleviate some of those problems. And Duke
- 7 is committed to pilot these storage projects.
- 8 You may have read about a micro grid
- 9 project that we're looking at right now in Anderson
- 10 County combining solar with storage to provide a
- 11 more reliable solution for the civic center there
- 12 in Anderson County. So that project is in its
- 13 early stages and still under development, but
- 14 that's an example of a commitment to it.
- But I caution that to say we are still
- in the early stages and the benefits of storage
- 17 really do come in when that storage can be operated
- 18 in realtime to respond to the events of the moment.
- 19 And when you think about pairing storage behind a
- 20 PURPA contract that's just a 20-year fixed price
- 21 contract where the utility does not have realtime
- 22 dispatchability of that storage asset, that storage
- 23 is simply going to be used to move off peak power
- 24 to on peak as the prices were set when that
- 25 contract was originally put into place and will

- 1 have limited ability to be responsive to realtime
- 2 conditions.
- 3 So how the storage gets put into
- 4 service, the pace at which it gets put in, the
- 5 mechanisms by which storage gets put in are very
- 6 important, so it's difficult to just blanket --
- 7 make a blanket statement around energy storage.
- 8 We agree with many stakeholders when we
- 9 say that there are need for updates and we think
- 10 that that's exactly correct and that having a
- 11 stakeholder involvement is important in that
- 12 process. We believe that that process should come
- 13 through this regulatory body in a way that all
- 14 stakeholders have a say into it to ensure some of
- 15 the issues Mr. Freeman talked about in terms of
- 16 pace, reliability and economic fairness to all
- 17 stakeholders are considered adequately.
- 18 So if we think, you know, a little bit
- 19 for a minute beyond just PURPA rates and how we
- 20 implement PURPA rates, Mr. Freeman talked about the
- 21 impacts of solar on the transmission and
- 22 distribution system. I want to take just a couple
- 23 of moments to talk about integrating it into our
- 24 existing generation fleet.
- 25 You know, as an IRP director, I look at

- 1 how our fleet of generation operates today and will
- 2 operate into the future. And it's important that
- 3 we think about integrating solar into an existing
- 4 fleet of generators. We have nuclear, we have
- 5 hydro, we have pump storage, gas turbines,
- 6 gas-combined cycles. You integrate significant
- 7 amounts of solar into that, that changes how those
- 8 generators are going to operate today and into the
- 9 future and being very thoughtful about that is
- 10 important.
- 11 We have to deal with that intermittency
- 12 on the generation side just like the transmission
- 13 and distribution side. And when you have large
- 14 amounts of solar coming onto a system, there are
- 15 times when you get what we call operationally
- 16 excess energy. So our nuclear plants run for many
- 17 years around the clock very reliably. We have one
- 18 of the best operating nuclear fleets in the
- 19 country, we run at a very high availability rate.
- 20 But in the spring and in the fall when
- 21 solar is at its best output, we actually get the
- 22 highest level of solar output. In the shoulder
- 23 months, it's when the -- you don't have degradation
- 24 on the panels, it's not hazy, it's very clear and
- 25 sunny, but there are times during the spring and

- 1 the fall when loads are very light.
- 2 So when you have very light load and
- 3 you have a lot of solar coming onto the system, you
- 4 have to back down existing generation to make room
- 5 for that solar. If you get too much solar, you
- 6 start getting solar that we can no longer
- 7 accommodate onto the grid and we have to ship that
- 8 off system.
- 9 And so you've seen that in other parts
- 10 of the country. You hear terms of excess energy or
- 11 dump energy or in PJM terms, like negative LMP's
- 12 where you're actually paying to produce the power
- 13 so that others will back down. So those are the
- 14 types of things that we need to be aware of and
- 15 mindful of from an IRP perspective.
- 16 And then we also in realtime need to
- 17 make sure we're compliant with all NERC balancing
- 18 standards. So NERC requires our system operators
- 19 to operate the system in realtime in a manner that
- 20 ensures grid stability. So things like frequency,
- 21 ramp rate, operating reserves, are all impacted as
- 22 the level of solar grows onto the system.
- 23 And so one of the considerations both
- 24 physically and financially is ensuring that as that
- 25 amount of solar comes on that the generation fleet

- 1 is able to respond to those ramp rates, to those
- 2 minimum load conditions and to that intermittency
- 3 and that we have sufficient operating reserves to
- 4 be able to do that.
- 5 The economic side of that is a term
- 6 that you may have heard called ancillary services
- 7 or generation ancillary services. And that just
- 8 refers to how much of that capability do you have
- 9 and what does it cost to provide incremental more
- 10 amounts of the ancillary services such as balancing
- 11 up, balancing down, or frequency. And so
- 12 determining that in an appropriate manner is -- and
- 13 getting that correct in the pricing of a QF rate is
- 14 very important.
- 15 And just as maybe a last illustration
- on this point, you know, this is a pretty rough
- 17 slide there, but it's a -- you know, we've heard of
- 18 the duck curve or many have heard of the duck curve
- 19 and I just thought I would illustrate. That's
- 20 something that came off of California. But you can
- 21 see with the amount of solar coming on the
- 22 Carolinas, we have our own version of this.
- 23 And what this shows is, you know, if
- 24 you go back just five or six years ago, that top
- 25 blue line represents 2012. And so if you think

- 1 about having to -- and that's going throughout the
- 2 day what kind of load do I serve.
- And so in California back in 2012,
- 4 generators would follow that blue line ramping up a
- 5 little in the afternoon, down a little in the early
- 6 evening, and then back up in the late evening as
- 7 people came home from work.
- 8 Now fast forward six years and I think
- 9 the yellow line actually projects 2020, so maybe
- 10 eight years forward from 2012 what the new gen --
- 11 or what the new load shape is that the generation
- 12 has to follow is that yellow line. So instead of
- 13 sort of being this gentle ramping up and down, when
- 14 solar comes on in the middle of the day, existing
- 15 generation has to back down very quickly to follow
- 16 down the yellow line to allow room for the solar to
- 17 come on, that as the sun passes the apex starts
- 18 going down, the solar output declines and you see
- 19 solar ramping up, and that ramp up is very quick.
- I just came from a conference where now
- 21 there's a new version of this that has a little
- 22 point on top of the duck curve from all the Tesla
- 23 owners in California that come home and plug their
- 24 car in to a high-charged port in their garage at
- 25 7:00 or 8:00 at night and it creates a quick spike

- 1 in demand. And due to quick charging, it comes
- 2 off, so now they call it the uniform curve because
- 3 you get a little spike. And they say as
- 4 penetration of Tesla increases, the horn on the
- 5 unicorn is going to get bigger.
- 6 So this is just an example of if you
- 7 don't know when you set long-term rates, you know,
- 8 what you might be serving 5, 10, 15, 20 years down
- 9 the road while you're locking into something today.
- 10 So that's just an example of some of the challenges
- 11 here in the Carolinas.
- We also have our winter version of
- 13 that. We are a winter-peaking, winter-planning
- 14 utility at DEP and DEC, and so we have early
- 15 morning peaks and late afternoon peaks. And the
- 16 version of that sort of looks like two peaks, but
- 17 then the trough in the middle gets much steeper and
- 18 that mid load gets much lower as you integrate more
- 19 and more solar.
- 20 So just accommodating all of that with
- 21 respect to both the physical reliability as well as
- 22 the economic certainty and fairness to customers
- 23 are two things we really think need to be addressed
- 24 when we think about either, you know, PURPA
- 25 implementation of QF rates or competitively

- 1 procured solar, these are the type of issues that
- 2 need to be addressed.
- 3 So with that, I will end my portion of
- 4 the presentation and hand it over to Mr. Ellerbe.
- 5 MR. ELLERBE: Thank you, Glen. Thank
- 6 you, Mr. Chairman, members of the Commission.
- 7 Frank Ellerbe; Sowell, Gray, Robinson
- 8 law firm.
- 9 I'm going to talk to you about a couple
- 10 of pieces of legislation that are pending. We
- 11 would not ordinarily come and appear before you to
- 12 talk about legislation, but the solar developers
- 13 came a couple of weeks ago and talked about this
- 14 legislation and explained to you all why they were
- 15 supporting it.
- 16 And we are going to explain -- my job
- is to explain why we're opposing that legislation,
- 18 what concerns we have about it. I only have four
- 19 slides to talk about, but I'm going to talk about
- 20 them -- I'm going to take them out of order. So if
- 21 you all will bear with me, I will walk you through
- 22 it.
- The first bill, they're companion
- 24 bills, but most activity has been in the Senate
- 25 Bill 890. And this is a bill that the solar

- 1 developers are supporting and it would adopt by
- 2 statute a number of elements of the PURPA contract.
- 3 I won't go into the details that it would -- you'd
- 4 have a statutory provision on the length of solar
- 5 PPA's, the size of the standard offer, other issues
- 6 would all be put in the statute and could only be
- 7 changes by amending the statute.
- 8 All of these things are things -- are
- 9 issues that this Commission has the authority and
- 10 discretion to deal with today, and we think that is
- 11 absolutely necessary. And the arguments and the
- 12 presentations by Gary and Glen this morning have
- 13 reinforced the importance of having flexibility to
- 14 deal with these issues and to deal with changing
- 15 circumstances, to deal with the things that we --
- 16 that we're learning.
- 17 And so we think that it's important
- 18 that this Commission retain its jurisdiction to
- 19 deal with those issues. And so we don't think 890
- 20 is a good piece of legislation, we don't think it's
- 21 in the public interest, and the company is opposing
- 22 it.
- 23 The other bill that -- there we go.
- 24 The other one I wanted to talk about is 987. This
- 25 bill and its house companion bill proposes a green

- 1 source or renewable energy rider in the statute.
- 2 The company supports the idea of a green source
- 3 rider. We believe you have the authority today to
- 4 approve a tariff or a rider that would address
- 5 these issues. And we think you all are in a better
- 6 position to address those issues again.
- 7 As I've just made the argument or made
- 8 the point on 890, same thing applies here. The
- 9 Commission is in a better position to balance the
- 10 interests of those customers that want to be able
- 11 to say we get all of our power from renewable
- 12 energy or green sources. Those customers -- we can
- 13 find a way to address that issue for those
- 14 customers, but we have to make sure that's done in
- 15 a way that doesn't disadvantage or harm our general
- 16 body of customers.
- 17 This is -- this slide, which is 25 --
- 18 I'm now going backwards. I just talked about 26.
- 19 This is 25. This is what the company has done in
- 20 other jurisdictions. It's allowed customers to
- 21 purchase green sourced energy and allowed for
- 22 specific type of energy. That customer pays any
- 23 cost above avoided cost, which is a way of
- 24 protecting the general body of customers.
- This is being done in some other

- 1 jurisdictions, has not -- the company has not found
- 2 a customer who wants to do this in South Carolina,
- 3 but we are open to it, looking for customers who
- 4 want to do it.
- 5 I think you all have approved an
- 6 arrangement like that for Boeing with SCE&G a
- 7 couple years ago, and Duke Energy is -- is willing
- 8 to do that. We think we can do it under the
- 9 existing statutory structure and that we don't need
- 10 a bill to do that.
- 11 This -- the last slide I'll talk about
- 12 and what -- what we -- it occurred to us these
- 13 bills that the solar developers are supporting, 890
- 14 and 987, are bills that were introduced without
- 15 consultation among the industry, and contrasting --
- 16 we want to contrast that for you all to what
- 17 happened with Act 236 in 2014.
- 18 Act 236 at the time it was introduced
- 19 had been worked on by stakeholders, utilities,
- 20 solar developers, environmental groups, customer
- 21 groups, the office of regulatory staff. There had
- 22 been a large collaborative effort among all the
- 23 stakeholders working to find compromised solutions
- 24 on issues.
- 25 That group of stakeholders stayed

- 1 together throughout the legislative process in 2014
- 2 and the bill -- and you all know part of the point
- 3 of that bill was again balancing the interest of
- 4 solar developers and people that wanted to get into
- 5 the solar business and bring those jobs to
- 6 South Carolina, as they like to talk about, but the
- 7 general assembly was insistent that we balance
- 8 those interests with the interests of the general
- 9 body of ratepayers and that we not -- that we limit
- 10 any subsidy by general ratepayers to the customers
- 11 who wanted to have solar. Act 236 has been a
- 12 success. We have seen rapid solar development in
- 13 South Carolina. We've seen minimal adverse effects
- 14 on the general body of customers.
- We think that's the kind of process
- 16 that ought to be followed in South Carolina for
- 17 doing new things. The company is certainly open to
- 18 working collaboratively with the solar developers
- 19 as the area indicated earlier and is continuing to
- 20 do that, but we don't think this go-it-alone
- 21 approach that they followed this year of
- 22 introducing these bills is the right way to go
- 23 about it. And we're much more likely to have a
- 24 successful legislative effort, regulatory effort,
- 25 if it's a result of all of the stakeholders getting

- 1 together.
- 2 I'm going to turn matters over now to
- 3 Brett Breitschwerdt, who has been -- who is a North
- 4 Carolina lawyer representing the company in
- 5 PURPA-related issues in North Carolina, and he is
- 6 going to tell you about the experiences there which
- 7 we think are very relevant to what could be
- 8 happening in South Carolina. Thank you.
- 9 MR. BREITSCHWERDT: Thank you, Frank.
- 10 Chairman and Commissioners, Brett
- 11 Breitschwerdt with the law firm of McGuire Woods in
- 12 Raleigh, North Carolina.
- 13 A pleasure to be here today. This is
- 14 my first trip to Columbia to be with you all not
- 15 appearing as an attorney for the company,
- 16 obviously, but -- I'm licensed in the state, but
- 17 I'm here to talk about PURPA issues and the
- 18 significant experience, as Mr. Freeman mentioned at
- 19 the beginning of his remarks, that other states
- 20 where the facilities are regulated have had with
- 21 PURPA.
- 22 So I'm going to do two things in my
- 23 brief time with you all this morning. I'm going to
- 24 start out by talking about PURPA in North Carolina
- 25 and then talk a little bit more about the House

- 1 Bill 589 legislation that North Carolina enacted to
- 2 involve PURPA, reform PURPA, as well as to
- 3 establish a more competitive process to procure a
- 4 significant amount of solar for the benefit of
- 5 customers in both North Carolina and
- 6 South Carolina.
- 7 So I think Mr. Ellerbe explained the
- 8 importance of making sure the Commission is taking
- 9 thoughtful approaches to implementing PURPA and
- 10 that the Senate Bill 890 is perhaps not the best
- 11 strategy and something the company doesn't support.
- 12 And I think part of the reason why I'm
- 13 here is to emphasize for the Commission that what's
- in Senate Bill 890 would do would be to effectively
- 15 legislate in South Carolina be the approach to
- 16 implementing a purpose to enter an offer that had
- 17 been in existence for the last decade in North
- 18 Carolina and has now been effectively rejected by
- 19 the Commission and rejected by the legislature
- 20 through the House Bill 589 reform.
- 21 So I want to start out with talking
- 22 about what is a standard offer. So under the PURPA
- 23 regulatory framework that exists, there's kind of a
- 24 concept of cooperative federalism where PURPA
- 25 establishes regulations and the state Commissions

- 1 then implement the statute enacted by Congress
- 2 consistent with those regulations, so that's for --
- 3 for this Commission to implement in South Carolina
- 4 and to determine a standard offer under those
- 5 regulations is for the utilities to present a
- 6 tariff to you all to approve.
- 7 And the Duke utilities current standard
- 8 offer tariff is a 2 megawatt tariff for a 10-year
- 9 term. Now, what -- that house -- excuse me, Senate
- 10 Bill 890 would mandate by law is a 5-year, 5
- 11 megawatt -- excuse me, 15-year term standard offer
- 12 for QF's. And as Mr. Snider said earlier, they
- 13 could -- there's no cap or limit on the number of
- 14 projects that could take service under that tariff.
- 15 And so for the last decade, North Carolina has
- 16 offered a similar standard offer tariff for 5
- 17 megawatt projects and there's been a significant
- 18 amount of uncontrolled development in the state.
- 19 So I wanted to emphasize kind of the chronology
- 20 here, just that the pace at which the solar was
- 21 developed under this 5 megawatt standard tariff.
- 22 So during 2011 there was a reasonable
- 23 amount of small solar developed in North Carolina
- 24 installed on the Duke in-progress systems, but
- 25 there was no utility scale solar to speak of, at

- 1 least not significant.
- 2 And within a 4-year period by the end
- 3 of 2015, the Energy Information Administration had
- 4 reported that North Carolina had more PURPA solar
- 5 in the US than any other state in the country and
- 6 the amount of solar installed had grown to -- by
- 7 over a thousand megawatts to over 1150 megawatts,
- 8 which is a significant growth. I mean, that's a
- 9 nuclear plant essentially in a very short period of
- 10 time to be installed on utility systems in the
- 11 state.
- 12 Fast forward two years and the North
- 13 Carolina Commission was evaluating its PURPA
- 14 implementation policies which included its standard
- 15 offer program 5 megawatt 15-year term. And the
- 16 Commission emphasized that these existing policies
- 17 had created a distorted marketplace for solar
- 18 projects resulting in artificially high costs being
- 19 passed on to customers in the state. And so the
- 20 Commission did in parallel with House Bill 589,
- 21 being inactive reform in a number of significant
- 22 ways, the way PURPA is implemented in
- 23 North Carolina which are not consistent with what's
- in Bill 890 would mandate for South Carolina.
- 25 I think I would just note that I was

- 1 not here at the developer's ex parte, but it's
- 2 interesting the Cypress Creek organization is a
- 3 large developer who has been very active in North
- 4 Carolina and they were very involved in the process
- of Act 236, the stakeholder process that came to
- 6 House Bill 589 being enacted. So go-it-alone
- 7 process that's happening here in South Carolina on
- 8 that piece of legislation for purposes of House
- 9 Bill 589, they were a participant and went in a
- 10 very different direction as part of the broader
- 11 stakeholder process than what Senate Bill 890 is
- 12 proposing to mandate for South Carolina.
- The one additional point I'd like to
- 14 flag is that reform is not just happening in North
- 15 Carolina in terms of implementing PURPA. NARUC in
- 16 December of last year submitted a letter to FERC.
- 17 There has been a proceeding going on at FERC for
- 18 some time asking the Commission to make changes to
- 19 its PURPA regulations to more effectively integrate
- 20 renewables into the grid and really called for two
- 21 important reforms that I want to emphasize.
- The first was similar to House Bill
- 23 589, which I'll speak about in a minute, moving
- 24 from traditional administratively established
- 25 avoided cost, which Mr. Snider spoke to a few

- 1 moments ago, to a competitive framework where you
- 2 are establishing a market price for renewables.
- 3 The second one that they addressed in
- 4 this letter to FERC was the need to address
- 5 regulatory arbitrage. And that was their language,
- 6 not mine, but I think it is an important term when
- 7 you look at the chart at the bottom of the page
- 8 which shows the number of 4 to 5 megawatt solar
- 9 projects in North Carolina compared to every other
- 10 state in the country. Well, this is the top ten
- 11 states, so there are no 4 or 5 megawatt projects
- 12 installed in any other -- or less than three in the
- 13 other 40 states.
- So I think what's important to
- 15 emphasize here is, you know, if you look at what a
- 16 5 megawatt 15-year term would mean for South
- 17 Carolina, if it develops like North Carolina did
- 18 over the last approximately five years before they
- 19 reformed their implementation of PURPA, that's 282
- 20 projects, approximately 1400 megawatts, when the
- 21 next largest amount of development in that size
- 22 category was California with only 28 projects were
- 23 approximately 140 megawatts, so significant
- 24 difference. And it's really been driven by that
- 25 unique regulatory policy in North Carolina.

- 1 So with that I'll turn to the next
- 2 slide, which is what does the reform mean and how
- 3 is it being implemented in North Carolina. So the
- 4 first significant piece is the standard offer
- 5 reform or the PURPA reform, Part 1 legislation.
- 6 The standard offer was revised from the 5 megawatt
- 7 15-year term to a 1 megawatt 10-year term. And
- 8 importantly, after a hundred megawatts or a hundred
- 9 projects are installed on the utility system, that
- 10 would drop down to 100 KW, which is the floor of
- 11 what the PURPA regulations initially called for
- 12 when that standard offer requirement was
- 13 established to allow small projects to be
- 14 developed.
- 15 Part 1 also provides for every project
- 16 above a megawatt a negotiated 5-year term power
- 17 purchase agreement that the utility would enter
- 18 into with QF's from 1 megawatt all the way up to 80
- 19 megawatts. And that's the same policy that the
- 20 companies have been implementing here in
- 21 South Carolina as well, which is consistent with
- 22 this North Carolina legislation.
- 23 And finally, this is something that is
- in Mr. Snider's wheelhouse, but the legislation
- 25 provided that capacity payments would only be

- 1 provided as part of a avoided cost rate if the
- 2 utility's IRP identified a need. So if the utility
- 3 doesn't have a need for new generation in the first
- 4 three years of a 10-year contract, the customer's
- 5 not going to be paying for that generation. It's
- 6 not needed from a QF because the indifference
- 7 principle Mr. Snider spoke about suggests that you
- 8 would only pay for capacity when you have a need.
- 9 House Bill 589 established a number of
- 10 other programs, the CPRE program or competitive
- 11 renewable energy procurement program (sic), which
- 12 I'll speak to in more detail in a moment, is a
- 13 significant new commitment, 2600 megawatts of new
- 14 renewable industry procurement which would be
- 15 procured in both North Carolina and South Carolina
- 16 potentially based on the least cost reliable
- 17 resources, whether QF or utility unit resources,
- 18 they would be able to deliver this energy to the
- 19 system.
- There is a green source rider program
- 21 similar to what Mr. Ellerbe spoke about that the
- 22 company is considering for South Carolina, and it
- 23 allows larger commercial industrial customers 5
- 24 megawatts in size or a commercial customer that can
- 25 aggregate to 5 megawatts in size to procure a

- 1 hundred percent green energy.
- 2 And importantly, the program requires
- 3 nonparticipating customers to be held neutral,
- 4 which is to ensure that they're not -- their rates
- 5 aren't going up because another customer wants
- 6 green energy. So a very important consideration in
- 7 designing a program like that.
- 8 The other three kind of pieces of the
- 9 program which I'll just touch on briefly were solar
- 10 leasing, solar rebates and community solar, which
- 11 are similar to the Act 236 programs here in
- 12 South Carolina. And those are all under
- 13 development and being put before the Commission in
- 14 North Carolina in the near future to be approved.
- So finally, I want to spend a little
- 16 bit of time talking with you all about the CPRE
- 17 program, which is the Competitive Procurement of
- 18 Renewable Energy Program. So as I've mentioned,
- 19 this is a very significant effort that the state is
- 20 undertaking in conjunction with performing PURPA to
- 21 continue to have a path forward for new renewable
- 22 energy resources to be brought onto the grid in a
- 23 more reliable and affordable fashion for customers.
- 24 So it's an alternative RPF program
- 25 qualifying facilities up to 80 megawatts in size

- 1 can bid into this RFP or they can elect to take the
- 2 5-year standard offer -- sorry, negotiated offer
- 3 power purchase agreement that is still available
- 4 under North Carolina's implementation of PURPA.
- 5 As Mr. Freeman mentioned earlier,
- 6 South Carolina projects are eligible to compete and
- 7 the company's hopeful that they'll be
- 8 cost-effective projects in South Carolina that can
- 9 deliver energy into this program and win the
- 10 solicitation, importantly to ensure the program is
- 11 cost-effective for customers, the cost of the power
- 12 purchase contracts would be capped at utilities
- 13 avoiding cost.
- 14 So any RFP winner coming out of this
- 15 program will by definition be less expensive than a
- 16 longer term -- or equivalently termed PURPA
- 17 contract, so the contracts are going to be a
- 18 20-year term initially based on the way the
- 19 legislation was written.
- The program allows the Duke utilities
- 21 to allocate between progress and Duke Energy
- 22 Carolina service territory, the amount of
- 23 generation to be procured as well as to identify
- 24 locations that will be more efficient to integrate
- 25 additional generation, which is important as more

- 1 and more areas on the grid become constrained and
- 2 there would need to be network updates in terms of
- 3 transmission lines to be constructed or other
- 4 improvements to the grid, integrate additional
- 5 solar.
- 6 So the framework of the program allows
- 7 the utilities to identify for developers where on
- 8 the grid be most efficient and effective to deliver
- 9 this -- to construct this additional solar so it
- 10 can be delivered to the grid most cost effectively.
- 11 Finally, there's two incremental
- 12 benefits over the traditional PURPA framework for
- 13 the way the power purchase agreements under this
- 14 program are designed to provide Duke operational
- 15 flexibility.
- 16 You heard Mr. Snider speak to the
- 17 challenges of ramping and he showed you the duck
- 18 curve and those increasing challenges that Duke
- 19 Energy projects specifically are experiencing as
- 20 additional incremental solar comes on line.
- 21 Under the CPRE program, the utility has
- 22 the rights under this power purchase contract to
- 23 dispatch and control the third-party assets in the
- 24 same way that they can control its utility-owned
- 25 assets, which allows them to be much more

- 1 efficiently used for the beneficial customers.
- 2 And finally, the renewable energy
- 3 attributes associated with these resources are
- 4 contracted for by the utility on behalf of
- 5 customers, which is another difference from PURPA.
- 6 Under the PURPA framework, the developer QF owner
- 7 would retain the renewable energy attributes and
- 8 sell them as another revenue stream to someone and
- 9 they wouldn't necessarily transfer to the utility
- 10 and to customers.
- 11 So this allows these REC's, that you
- 12 might have heard that term used before, to be
- 13 transferred to utility to then be allocated amongst
- 14 retail and wholesale customers. So the energy
- 15 delivered by this program will be green energy
- 16 that's delivered to customers in both North
- 17 Carolina, South Carolina, and the wholesale
- 18 customers served by Duke Energy Carolinas or Duke
- 19 Energy Progress.
- 20 The first RFP planned under the program
- 21 is planned for later this summer, Q2 likely this
- 22 year, and then there will be four -- or that will
- 23 be the first of four tronches or RFP solicitations
- 24 planned over the next 45 months to procure this
- 25 2600 megawatts of solar, so significant new

- 1 program.
- 2 And with that, I'll close and
- 3 Mr. Snider is going to have some final remarks.
- 4 MR. SNIDER: Thank you, Brett.
- 5 So in conclusion, you know, the panel
- 6 talked about a lot of issues today, you know, but
- 7 to sort of sum it up around there's physical
- 8 considerations from interconnection transmission
- 9 distribution as well as generation impacts and
- 10 that's why I wanted to be very thoughtful about how
- 11 we implement solar. There are financial
- 12 implications in terms of risk and financial risk
- 13 and who bears that financial risk.
- 14 And then as Mr. Ellerbe and
- 15 Mr. Breitschwerdt talked about, there are
- 16 regulatory and policy considerations. So when we
- 17 take that in total, we really want to again just
- 18 sort of end with where we started and say, you
- 19 know, there are multiple paths forward for
- 20 integrating renewables onto the grid and I think
- 21 careful consideration needs to be given to what's
- 22 the best path.
- 23 We certainly believe that in this
- 24 environment with declining costs that a
- 25 competitively procured program has benefits over

- 1 long-term fixed price rates. That pace of
- 2 adoption, again as Mr. Breitschwerdt pointed out,
- 3 our competitive procurement plans for DEC and DEP
- 4 are spread out over four years. It's not an
- 5 all-at-once type of program, and pacing that across
- 6 time and allowing the market to evolve is
- 7 important.
- 8 Ensuring reliable electric service,
- 9 that means both at the transmission and
- 10 distribution as well as at the generator, is very
- 11 important; so going too fast too quick, we've seen
- 12 it result in playing catchup. So the pace is very
- important, to do that at the right pace, and then
- 14 assessing and mitigating the economic risks to
- 15 consumers.
- 16 Again, I've heard stakeholders say that
- 17 there are no risks to consumers and that has not
- 18 borne out to be the case. There are certainly
- 19 economic risks that need to be considered. The
- 20 longer the term of any fixed price QF contract that
- 21 doesn't involve competitive procurement, but is
- 22 simply a rate based on market conditions at a given
- 23 point in time, the greater the risk is that when
- 24 you get to the -- towards the end of that, that
- 25 those assumptions were wrong and that could go

- 1 either way for consumers.
- 2 And then we spoke a lot about the
- 3 volumetric targets in terms of matching the amount
- 4 of solar that comes onto a grid with actual need,
- 5 so both the physical need and the financial
- 6 benefits need to be matched. So we'll just
- 7 conclude with those statements around, you know,
- 8 the paths of solar, the pace of solar, and then
- 9 thinking about the physics as well as the economics
- 10 of it to ensure we have reliable and cost-effective
- 11 integration of solar as we move forward.
- 12 So with that, we would conclude for the
- 13 panel with our prepared remarks and we would
- 14 certainly be happy to -- any of us to entertain
- 15 questions from the Commission at this point in
- 16 time.
- 17 CHAIRMAN WHITFIELD: Well, thank you
- 18 for all four of your presentations and at this time
- 19 we'll now take Commissioner questions.
- 20 Mr. Elam.
- 21 COMMISSIONER ELAM: Good morning.
- Mr. Freeman, you mentioned a couple of
- 23 examples of solar development problems in Hawaii
- 24 and California. I didn't know if you could -- you
- 25 can expound on what you talked about a little bit

- 1 blacking out Oahu for a couple of days or
- 2 California losing a thousand megawatts of solar.
- 3 MR. FREEMAN: Sure. You know, in Oahu,
- 4 the blackout didn't last for a couple days but it
- 5 lasted for several hours. And what happened with
- 6 the first example in Hawaii is they lost their
- 7 largest generating unit, traditional generating
- 8 unit, and all the solar inverters kind of saw the
- 9 loss of that unit. And it's kind of technical, but
- 10 they're looking at -- you know, inverters kind of
- 11 operate -- they look at frequency in voltage. And
- 12 if they saw a -- in this case they saw a pretty
- 13 significant drop in frequency, which is a critical
- 14 kind of reliability component.
- 15 And the inverters began tripping off
- 16 and it created kind of a -- you know, kind of a
- 17 cascading effect, and that tripped off all the
- 18 other units so the entire island blacked out. And
- 19 it happened twice, so... You know, they've
- 20 rectified the problem. You know, it's part of this
- 21 living and learning as you go. But that's
- 22 something that we're very careful about and
- 23 consider -- you know, take serious consideration
- 24 about, you know, the impacts.
- The second example, if you're familiar

- 1 with Hawaii, they've had a lot of roof -- I'm still
- 2 talking about Hawaii. Most of their adoption has
- 3 been residential small rooftop facilities. So when
- 4 you get a lot of rooftop facilities kind of right
- 5 there together all being served off the same small
- 6 service transformer and they're all during low, low
- 7 periods kind of trying to push all that solar back
- 8 up onto the system, you're seeing voltage rises and
- 9 you're tripping off a lot of residential equipment,
- 10 air conditioning equipment, things like that. So
- 11 it's like trying to push a lot of water through a
- 12 pipe, you know, the pressure goes up as you're
- 13 trying to push that water through the pipe. So
- 14 those are the two Hawaii examples.
- 15 And in California, there's been a
- 16 pretty significant focus by NERC on what happened
- 17 out there, and this is tied to one of the fires out
- 18 in California. I can't remember the specifics, but
- 19 almost instantaneously they lost about a thousand
- 20 megawatts of solar production. And, you know, you
- 21 think about it, I mean, you lose that amount of
- 22 generation instantaneously, you know, your other
- 23 generators on the system have to, you know,
- 24 immediately ramp up to accommodate that.
- 25 So they -- there's no blackout there,

- 1 but that was just a significant challenge to kind
- 2 of manage that. As you go deeper and deeper with
- 3 your solar penetration, it just makes that
- 4 challenge even more significant.
- 5 COMMISSIONER ELAM: It was because of
- 6 the fires?
- 7 MR. FREEMAN: The fires -- there was
- 8 another kind of cascading example where the fires
- 9 were probably the root cause, but with the solar
- 10 that was on the system, that was part of the
- 11 ultimate cascading there.
- 12 COMMISSIONER ELAM: You talked a little
- 13 bit about kind of what you're talking about in your
- 14 previous answer, the system being able to handle
- 15 all the load that may come in too much at the wrong
- 16 spot. Can your grid be affected by solar projects
- 17 that aren't even in your service territory?
- 18 MR. FREEMAN: I think the short answer
- 19 is yes for a couple reasons. You know, from a
- 20 transmission network perspective, you know, I mean,
- 21 all the, you know, neighboring grids are all kind
- of interconnected together, so too much generation
- in one place can have an impact on each other's
- 24 grids.
- 25 And then Mr. Snider kind of referenced

- 1 this kind of -- I call it kind of during minimum
- 2 load hours in a day when the sun is really shining,
- 3 you know, where do you put all that additional
- 4 generation if you can't consume it on your own
- 5 system. You know, so this leads to, you know,
- 6 things that we're -- we're really wrestling with
- 7 right now is how do you curtail and pay for
- 8 curtailment and compensate. It's just kind of
- 9 another one of the many challenges that we've got
- 10 to face going forward.
- 11 COMMISSIONER ELAM: I guess it's
- 12 Mr. Snider. I'm looking at your Slide 16 and when
- 13 you were talking about PURPA placing no limits on
- 14 the volume of the facilities that subscribe to the
- 15 OF rate offering. Is this almost kind of a reverse
- 16 problem for hedging?
- MR. SNIDER: Yeah, that's a good way to
- 18 think about it, which is if you think about buying
- 19 PURPA power, customers are paying for this just
- 20 like they would natural gas or coal. With natural
- 21 gas or coal, you have estimates of how much you're
- 22 going to burn in the future and you have a
- 23 procurement program that's very systematic, so
- 24 you're buying a little bit forward at various
- 25 points in time, sort of like investing in your

- 1 401-K every two weeks, you have a systematic way of
- 2 doing that.
- With PURPA, you put out a price signal
- 4 that's developed through a QF rate that has no
- 5 limit to who may or may not subscribe to that. So,
- 6 you know, what you see is you have an obligation
- 7 under PURPA to purchase any qualifying facility
- 8 that goes through the proper steps that Mr. Freeman
- 9 spoke about.
- 10 But they don't have an obligation to
- 11 you to sell so, you know, sometimes you might not
- 12 get any, but then if there's a pricing out there
- 13 that the market likes, it can come with no
- 14 constraint on it. So it is sort of a reverse --
- 15 like you said, in the hedging, it's the reverse of
- 16 hedging that's being put to you instead of you
- 17 doing it in a systematic manner.
- 18 COMMISSIONER ELAM: Can the price
- 19 signal be flexible enough to take into account what
- 20 your needs are at a particular time?
- 21 MR. SNIDER: I think that's one of the
- 22 benefits of having shorter term contracts because
- 23 needs change across time and you do your best to
- 24 assess what the need is today. But one, two,
- 25 three, four years down the road, that need changes.

```
1 So if you locked up 20 years with one
```

- 2 thought of need and then five years in that was way
- 3 off, whether it's the need or the price of gas or
- 4 the price of coal, you could -- the longer the
- 5 term, the more you could be off. So yeah, I do
- 6 think you can send the right price signal if you
- 7 update it often and you keep the terms short.
- 8 Those are two ways to help mitigate that, is
- 9 periodic updates.
- 10 And that's why you see with the large
- 11 QF's above one megawatt or, you know, in North
- 12 Carolina, at least, we limit to a 5-year term and
- 13 we actually look at the market every -- you know,
- 14 every deal that we do is reflecting what the market
- 15 was at that point in time, whereas a standard rate,
- 16 because it involves a process of publishing a rate
- 17 and putting it in place, you don't update those
- 18 every month, so stay in time -- you know, in place
- 19 sometimes, you know, two years at a time or longer,
- 20 and so they're a little bit more difficult to
- 21 update in realtime when you have a published
- 22 tariff, whereas a negotiated rate can -- if gas
- 23 goes way up, you'll raise the rate you're willing
- 24 to pay; as it goes way down, you'll lower it, you
- 25 keep the term shorter, and it helps to better match

- 1 all that. So I do think there are strategies to
- 2 help ameliorate that.
- 3 COMMISSIONER ELAM: Okay. With that 5
- 4 megawatt standard, is it fair to say that as time
- 5 goes by, the time it takes to build a 5 megawatt
- 6 facility drops?
- 7 MR. SNIDER: I think that the
- 8 experience -- and I'll allow Mr. Freeman to weigh
- 9 in if I miss this, but part of it is time to build
- 10 the facility. But as you get such high volumes of
- 11 this as we saw in the opening slides, the time to
- 12 study each one of those very carefully grows.
- So if we have 50 projects in the queue,
- 14 we can do that more rapidly than 500, than 5,000.
- 15 So the time to interconnect them grows while the
- 16 time to actually construct may actually be going
- 17 down. I don't know, Gary, if you have any other
- 18 comments on that.
- 19 MR. FREEMAN: Well, I'll just give you
- 20 kind of what I would call a poster child example.
- 21 There's a 5 megawatt project that -- I mean,
- 22 generally what we're seeing is, you know, a 5
- 23 megawatt-sized project, they can construct and
- 24 build that now in like two months. I mean, they've
- 25 got that process down pretty refined.

```
1 But the upgrades that were required on
```

- 2 the distribution system, the developer paid Duke
- 3 2.3 million dollars to make the upgrades and it
- 4 took us nine months to complete the upgrades. We
- 5 had a -- normally you have like a 3 to 4-man crew
- 6 kind of doing the construction work. We had a
- 7 15-person crew doing that work to bring on that 5
- 8 megawatt project.
- 9 So that's one of the things we're
- 10 hoping to solve with this competitor procurement
- 11 process, is identify a location on the grid where
- 12 you can minimize upgrades. I mean, we still have a
- 13 lot of projects where the upgrades required on the
- 14 system are zero, then in other cases where you get
- 15 this PURPA kind of rate distortion, you get -- you
- 16 know, you can -- these developers can afford to pay
- 17 significant upgrade costs.
- 18 So in this particular example, this was
- 19 a PURPA rate that was like 80-some dollars megawatt
- 20 hour, where you're seeing today, you know, solar
- 21 projects, you're reading in the news I think quite
- 22 regularly where solar costs have come down to under
- 23 40 hours of megawatt hours. So that's that
- 24 distortion and the impact that it has even on the
- 25 studying and the cost and the level of effort it

- 1 takes us to connect the project on the grid.
- 2 COMMISSIONER ELAM: And one last thing
- 3 occurs is obviously South Carolina is a vertically
- 4 integrated state. Are these problems any different
- 5 in retail competitive states than vertically
- 6 integrated states?
- 7 MR. FREEMAN: For me it depends on what
- 8 problem you're referring to. Can you identify the
- 9 number?
- 10 COMMISSIONER ELAM: Transmission grid
- 11 management, just some of the problems of too big,
- 12 too out in the middle of nowhere.
- MR. FREEMAN: Sure. I'll answer this
- 14 way. I mean, the answer -- the short answer is
- 15 yes. I mean, all retailers are kind of facing some
- 16 of the same types of issues. You know, too big on
- 17 too small a part, you know, too weak a part of the
- 18 grid requires upgrades, you know, to accommodate
- 19 the project.
- You know, it's not maybe that much
- 21 different than I think about like, you know, the
- 22 transportation highway infrastructure. You know,
- 23 if you put a large shopping mall out in the middle
- of nowhere, I mean, you've got to build
- 25 infrastructure to accommodate, you know, the cars

- 1 and traffic on there. So it's very similar so
- 2 we're seeing it across the country, yes.
- 3 COMMISSIONER ELAM: Okay. That's all I
- 4 have, Mr. Chairman. Thank you.
- 5 CHAIRMAN WHITFIELD: Thank you,
- 6 Commissioner Elam.
- 7 Other Commissioner questions?
- 8 Mr. Randall.
- 9 COMMISSIONER RANDALL: Thank you, Mr.
- 10 Chairman.
- 11 Thank you, gentlemen.
- 12 I just had a couple of questions.
- 13 Going back to where you're talking about the
- 14 projects needing -- you know, needing upgrading to
- 15 the transmission system where you are, does that
- 16 affect -- say you got a large project. Does that
- 17 affect where it is in the queue for how you -- I
- 18 mean, do you really -- I'm trying to make this
- 19 question make sense. A project that say is in a
- 20 rural area that may not be close to -- may need
- 21 transmission upgrades, does that -- if there's
- 22 another project that's closer to these less
- 23 transmission upgrades, does that put it higher in
- 24 your queue to get accomplished, I guess?
- MR. FREEMAN: I mean, today under the

- 1 South Carolina interconnection standards and really
- 2 even under the FERC interconnection standards, I
- 3 mean, we're obligated to study and develop
- 4 solutions for each project kind of sequentially.
- 5 So that first project is just kind of first in,
- 6 first study, you know, first solution.
- 7 I mean, a lot of states, especially the
- 8 big RTO's and even some states have moved to more
- 9 of a cluster study kind of grouping study concept
- 10 where you study all the projects as one group and
- 11 then allocate those upgrade costs across a number
- 12 of projects. That's something that we are
- 13 considering.
- 14 I think, you know, the solar developers
- 15 a couple of weeks ago when they were here kind of
- 16 alluded -- kind of indirectly alluded to some
- 17 conversations that we've even had with them about
- 18 moving to that kind of process. I don't know if
- 19 that answers your question.
- 20 COMMISSIONER RANDALL: Yeah. Yeah.
- 21 One other question. Going back to your -- the
- 22 5-year term -- rate term for QF's in North
- 23 Carolina, how does that -- you know, an old -- I
- 24 know in talking about building capacity, you always
- 25 having to plan -- we always hear you need to plan

- 1 20 years out. How does this having a 5-year term
- 2 affect financing for the developer?
- 3 MR. SNIDER: You know, what we've seen
- 4 in other jurisdictions here as well is you're
- 5 giving -- a 5-year term doesn't mean you're only
- 6 going to take service for 5 years, right? You have
- 7 an obligation under PURPA to accept service under
- 8 term -- financeable terms and conditions beyond
- 9 that 5-year period so you can have that ever green.
- 10 All the 5-year term does is that we're
- 11 not willing to fix the price and have consumers
- 12 wear the risk of the price beyond Year 5. So, you
- 13 know, in Year 6, if gas has gone up 2 dollars in
- 14 MMBTU and that affects the avoided cost, you'll
- 15 make more money in Year 6. Or if it's gone down 2
- 16 dollars in MMBTU, which then affects your avoided
- 17 provided cost price, you'll make less but it better
- 18 matches, but you still have that obligation to
- 19 purchase so they have the quarantee to know that
- 20 they'll be -- being purchased from, it's just the
- 21 fixed price nature of it does not have to extend
- 22 beyond the 5-year term.
- 23 COMMISSIONER RANDALL: Okay. Thank
- 24 you. That answers my question.
- Thank you, Mr. Chairman.

- 1 CHAIRMAN WHITFIELD: Thank you,
- 2 Commissioner Randall.
- 3 Commissioner Hamilton.
- 4 COMMISSIONER HAMILTON: Thank you,
- 5 gentlemen, for being here today.
- I think we've heard the opposite of
- 7 what we heard a couple of weeks ago about the same
- 8 thing, the problem that the solar people see and
- 9 this power problem today that you see. And I know
- 10 getting 236 off the ground, we had the alliance or
- 11 the working group that worked together from
- 12 industry and from the solar people along with the
- 13 mediation ability that ORS has. Do you think it
- 14 would be better if this would be considered as
- 15 going forward to try to work these problems out
- 16 better than it is to fight it out on the house
- 17 floor or the senate floor? That's kind of where we
- 18 are, isn't it?
- 19 MR. ELLERBE: Yes, Mr. Commissioner,
- 20 that is what we think, that there is a way that it
- 21 could be worked out if we could do it -- follow the
- 22 method or the approach that was taken on Act 236,
- 23 yes, sir. And that was, as Brett talked about, the
- 24 North Carolina experience, a lot of problems, a lot
- 25 of litigation, a lot of contested litigation, and

- 1 then a legislative process that ended up with --
- 2 and I'll let him correct me, but with support by a
- 3 broad range of stakeholders. So that's -- yes, we
- 4 agree.
- 5 COMMISSIONER HAMILTON: I know I've
- 6 seen where the solar farms are coming in that we're
- 7 hearing about. I mean, I know where they are and I
- 8 know that the transmission is not there at this
- 9 time, so it does look like a way could be worked
- 10 out where we could move forward much like other
- 11 states have and have a -- have you folks all get
- 12 together in one room and get Miss Pittman or some
- 13 of her folks to help you get to the end of the
- 14 problem. I don't know how to get you there. I
- 15 talked to the other group about it.
- 16 MR. ELLERBE: It may be a process
- 17 getting there.
- 18 MR. FREEMAN: I just want to reinforce
- 19 that we are hosting this first technical
- 20 stakeholder group in two weeks and it's designed to
- 21 do exactly that. The solar developers had invited
- 22 some real strong kind of industry technical
- 23 engineers to participate in that and we have as
- 24 well. And we do think that's a good approach going
- 25 forward to be more transparent, more collaborative,

- 1 and design solutions that, you know, are more
- 2 win/win.
- And we've seen it already with some of
- 4 our -- some of the technical standards that we have
- 5 kind of deployed in the last two years. And, you
- 6 know, we all bring very valuable kind of
- 7 perspectives together, which does reinforce what I
- 8 think you're promoting.
- 9 COMMISSIONER HAMILTON: I thank you.
- 10 Well, hopefully it will work. Appreciate you being
- 11 here.
- 12 CHAIRMAN WHITFIELD: Thank you,
- 13 Commissioner Hamilton.
- 14 Commissioner Howard.
- 15 COMMISSIONER HOWARD: Good afternoon,
- 16 gentlemen. Thank you for your presentation.
- 17 It was stated -- and I'm not going to
- 18 call any names, but whoever feels more qualified to
- 19 answer the question.
- There was some talk about updating QF,
- 21 avoiding cost methodology. What changes would
- 22 you -- how would you update or what changes would
- 23 you make in the current methodology to do it?
- MR. SNIDER: That's a very good
- 25 question. There's both methodology and then

- 1 there's inputs. So again, from the pure
- 2 indifference principle, it's what are we actually
- 3 avoiding by procuring power instead of generating
- 4 off of the grid. And so as coal prices change, gas
- 5 prices change, new technologies go into your system
- 6 that avoided cost changes. So that's one, you
- 7 know, just changing the inputs on a regular basis
- 8 to reflect the current market conditions.
- 9 The other has to do with some of the
- 10 issues we just spoke about in terms of how the --
- 11 right now, for example, rates are not -- these are
- 12 not solar rates. These are generic QF rates that
- 13 look at what's the value of any QF in a very
- 14 generic basis. That may not be a good
- 15 representation of what solar provides. So when you
- 16 look at average energy costs, that's different than
- 17 what solar energy provides.
- 18 When you look at capacity value, for
- 19 example, a generic methodology would look at maybe
- 20 having a resource around the clock that would
- 21 ascribe capacity value, meaning -- when we say
- 22 capacity value, what generation are we not going to
- 23 build if we get solar put onto the grid.
- 24 Well, in our -- you know, today we
- 25 actually pay capacity payments under the current

- 1 rate design even though we really aren't avoiding
- 2 any capacity with solar coming onto the grid. Our
- 3 peaks are in the mornings in the winter when it's
- 4 very cold and we have to be able to serve those
- 5 reliably. We have no solar output at that point in
- 6 time, but we have a rate design in place today that
- 7 still compensates for avoiding capacity.
- 8 So I think those are the types of
- 9 issues that need to be addressed going forward in
- 10 addition to a host of others to look at to say, am
- 11 I truly matching this indifference principle, is
- 12 the customer truly being held harmless by paying a
- 13 price for solar energy and capacity, and is that
- 14 really the value that's being avoided from the
- 15 utility.
- And making sure that indifference
- 17 principle is adhered to requires both these inputs
- 18 to be updated as well as the methodology, and so we
- 19 think that's an important distinction we need to
- 20 make going forward.
- 21 COMMISSIONER HOWARD: You used a term
- 22 PURPA solar. What is nonPURPA solar?
- 23 MR. BREITSCHWERDT: Sure. Well, PURPA
- 24 provides that a solar facility can register with
- 25 the Federal Energy Regulatory Commission as a

- 1 qualifying facility. And when they do that, they
- 2 have the rights to avoid cost rate and the rights
- 3 to sell a utility as a QF.
- 4 And so nonPURPA solar would be a
- 5 generating facility that's selling into the
- 6 wholesale market or a small facility that's behind
- 7 the meter that's on a customer's rooftop. That's
- 8 not selling wholesale to the regulating utility
- 9 that then resells that power to its customers.
- 10 COMMISSIONER HOWARD: It really is a
- 11 small factor in the overall picture?
- 12 MR. BREITSCHWERDT: The nonPURPA solar?
- 13 COMMISSIONER HOWARD: Yes.
- 14 MR. BREITSCHWERDT: In the southeast in
- 15 regulated jurisdictions, I think that's a fair
- 16 characterization, yes, sir.
- 17 COMMISSIONER HOWARD: I understand the
- 18 word, but define to me in the context that you
- 19 used, discussed too big and wrong location. What
- 20 does that mean to you?
- 21 MR. FREEMAN: I'm trying to think of an
- 22 analogy. I want to go back to my transportation
- 23 analogy. You know, if you've got maybe a Walmart
- 24 or a shopping center down a dirt road or something
- 25 like that, you know, that's too big to be

- 1 accommodated by that dirt road, if that's a good
- 2 example.
- 3 So that's what I mean by just too big
- 4 for the location that it's being proposed in to be
- 5 accommodated by the grid or, you know, the size of
- 6 the grid at that location, which in order to solve
- 7 for that we've got to make significant upgrades to
- 8 the circuit or the system to accommodate.
- 9 COMMISSIONER HOWARD: Is that the rate
- 10 base -- I mean the rate pay for a situation like a
- 11 Walmart was placed in a bad location, so to speak,
- 12 would that be the rate pay as --
- 13 MR. FREEMAN: No. I mean, generally
- 14 how -- maybe our legal support can help with this.
- 15 I mean, generally how I think, you know, this
- 16 Commission, you know, the North Carolina Commission
- 17 and others from a PURPA perspective, the costs are
- 18 borne by the cost causer is kind of how I think
- 19 about it.
- 20 So under a PURPA rate, if that
- 21 particular facility at that particular location is
- 22 requiring grid upgrades, that developer of that
- 23 facility pays those upgrades and those costs are
- 24 not put into rate base.
- 25 COMMISSIONER HOWARD: Okay. You

- 1 mentioned interconnection taking much longer with
- 2 more people. Why is that? Solar interconnection.
- 3 Why would it take longer and utilize more people?
- 4 MR. FREEMAN: I'm not following you
- 5 with the --
- 6 COMMISSIONER HOWARD: There was a
- 7 statement made about backlog and this type of
- 8 stuff, but it takes longer, I think you said nine
- 9 months, to connect the solar interconnection with
- 10 more people. Why is that?
- MR. FREEMAN: Okay. Well, that was
- 12 just an example of a particular facility that
- 13 was -- I'll call it, to use your analogy, located
- 14 in what I would call the wrong location. We had to
- 15 upgrade 8 miles of distribution circuit to
- 16 accommodate that project in the location that it
- 17 was proposed.
- 18 In order to try and speed up the
- 19 upgrade work that Duke needed to do -- I mean, we
- 20 brought in extra crews to try and, you know,
- 21 complete that project as quick as we could. So, in
- 22 other words, that kind of -- I'll call it that
- 23 disconnect where the developer can complete their
- 24 construction of their 5 megawatt project in 2
- 25 months.

- 1 And for us, we struggled for 9 months
- 2 to really bring that facility on line where, you
- 3 know, in another example if that facility then
- 4 located in an area where there were no upgrade
- 5 costs, I mean, our work would only take us a couple
- 6 days. You know, so lining facilities up in
- 7 locations that are kind of what I would call maybe
- 8 win/win, you know, for both the developer and the
- 9 utility is what we're promoting.
- 10 COMMISSIONER HOWARD: In your slide on
- 11 Olanta, the map type slide where you had the
- 12 substation five miles away?
- MR. FREEMAN: Yes, sir.
- 14 COMMISSIONER HOWARD: Who would pay for
- 15 that? Would the developer pay to have that
- 16 substation -- I mean for that solar facility to
- 17 connect to your substation?
- 18 MR. FREEMAN: Yes, sir, they would. I
- 19 think you're referring to the five projects that
- 20 were kind of in the upper left-hand corner.
- 21 COMMISSIONER HOWARD: Right.
- MR. FREEMAN: Yeah. I mean, 50
- 23 megawatts, if you think about that, I mean, that's
- 24 way, way, way more generation than we could connect
- 25 to the distribution system. So my point was the

- 1 only feasible way to connect would be to build a
- 2 transmission line over to our existing transmission
- 3 line. And you're right, the developer would be
- 4 responsible for paying that cost, obtaining that
- 5 right-of-way to accommodate that upgrade.
- 6 COMMISSIONER HOWARD: Thank you very
- 7 much, and I enjoyed your presentation.
- 8 CHAIRMAN WHITFIELD: Thank you,
- 9 Commissioner Howard.
- 10 Commissioner Fleming.
- 11 COMMISSIONER FLEMING: Thank you. This
- 12 has been very interesting. A lot of information
- 13 you've given us to deal with.
- 14 I want to go back to the stakeholder
- 15 question that Commissioner Hamilton was asking you
- 16 about. Not only was it used as you know for Act
- 17 236, but for the clean -- proposed clean power plan
- 18 and I think even the energy plan that is out in
- 19 other ways. So that -- that process has been
- 20 established as a successful way of dealing with
- 21 these things.
- I think it's important that you all are
- 23 doing an interconnection session with the solar
- 24 people, but to get so many of these answers --
- 25 answers to so many of these issues, it seems like

- 1 you need a neutral party to be pulling the
- 2 stakeholders together and keeping everybody in the
- 3 room and on track. And I understand that certainly
- 4 was needed with that 236.
- 5 So since it's been established already,
- 6 how can that be brought forward? I mean, this is a
- 7 really important issue for clean power, it's a
- 8 really important issue for reliability, it's a big
- 9 economic issue, so it's got a huge impact. So how
- 10 can we use the process that's already established?
- 11 What is the best way to bring it together? What is
- 12 the group to do it?
- 13 MR. ELLERBE: Well, Commissioner, I
- 14 think that there was, say, a year or 18 months ago,
- 15 there was an expectation of sort of the energy
- 16 policy planning was going to continue. There were
- 17 some efforts in that direction. I think the
- 18 project which is outside the scope of this ex parte
- 19 briefing that you all are extremely familiar with
- 20 that is dominating the political discussion on
- 21 energy matters, I think that's probably
- 22 short-circuited those efforts.
- 23 Everybody is focused on other things
- 24 right now or a lot of the players in the utility
- 25 side are focused on that and the ORS certainly is,

- 1 and so it's probably -- the process that you're
- 2 describing to some degree is a victim of that --
- 3 another victim of that situation.
- 4 COMMISSIONER FLEMING: But it's not
- 5 stopping the legislation going forward concerning
- 6 solar and with changes that really need to be
- 7 resolved it sounds like to me working together
- 8 rather than one against the other.
- 9 MR. ELLERBE: Well, we agree with that
- 10 and what -- our preference would have been a --
- 11 some sort of collaborative process in advance of
- 12 those bills being introduced, which didn't take
- 13 place. The bills were introduced without
- 14 collaboration among the shareholders.
- 15 COMMISSIONER FLEMING: So I quess --
- 16 well, so it's just a process that that does seem to
- 17 be need -- needs some focus since it has resulted
- in some good results in the past. But you also
- 19 said several times, well, that's -- they're looking
- 20 at doing something that you have the authority to
- 21 do and you don't need to kind of double up on
- 22 something.
- So I guess there is another issue that
- 24 I'm thinking about because it's come about -- we've
- 25 talked about it internally that education of the

- 1 public, it sounds like education of the elected
- 2 officials. And that's a real big issue as to how
- 3 to just educate the public about utilities and how
- 4 they work, how regulation works.
- 5 And as I said, it sounds like it needs
- 6 to be done with elected officials as well. And
- 7 have you all discussed any of those things? Have
- 8 you -- I know North Carolina has worked through
- 9 some issues. I guess where should the impetus come
- 10 from? Should we be doing more?
- MR. ELLERBE: Well, one thing that is
- 12 sort of implicit in my presentation to you is we
- 13 think these issues are exceedingly complicated and
- 14 they're interconnected. And something that might
- 15 look good on the surface has repercussions. As you
- 16 get -- as Glen was talking about, you get more and
- 17 more solar, it becomes less valuable.
- 18 The reason that we have a Public
- 19 Service Commission is to get a group to delegate
- 20 the consideration of those issues and the
- 21 resolution of those issues. You all develop
- 22 expertise, you bring expertise to the Commission,
- 23 you develop expertise as your own Commission, you
- 24 have these ex parte briefings.
- 25 That's the role of the Commission, is

- 1 to try to resolve these issues that are difficult
- 2 for lay people to get their hands around and
- 3 difficult for legislators. And so that's -- I'm
- 4 not saying that you all have an obligation to
- 5 educate the public about it. I hope the public is
- 6 paying more attention now.
- 7 But I think that the -- your role is to
- 8 be the experts and to develop the expertise and to
- 9 have the hearings and hear from both sides and then
- 10 apply rules and rule on the issues. And so that's
- 11 what you all are here for, is to deal with these
- 12 complex issues.
- 13 COMMISSIONER FLEMING: Right. Well, I
- 14 understand that. I'm just trying to see how we can
- 15 better educate the public, not the Public Service
- 16 Commission educating them, but having an entity
- 17 that can move forward on that front.
- 18 But I -- well, there are a couple of
- 19 questions. One I wanted to get back, and I think
- 20 Commissioner Howard was talking about it, are some
- 21 of these issues with citing some of the events that
- 22 took place like in the Campbell's Soup factory.
- 23 At what point -- I mean, now I believe
- 24 you said that you are using -- you're inspecting
- 25 before energizing. Had you done that before or

- 1 did -- was this something that you came upon after
- an event occurred that required a little bit more
- 3 detail?
- 4 MR. FREEMAN: Sure. We had not been
- 5 doing it before. And it was actually the
- 6 Campbell's Soup event that when we inspected that
- 7 particular facility, we realized that there were
- 8 some construction standards that weren't followed
- 9 at least like we thought they should be followed.
- 10 We looked at the facility and there were clearly
- 11 some deficiencies there. So that's really what
- 12 triggered the inspection.
- The other thing is that, you know, all
- 14 these facilities we refer to as kind of the medium
- 15 voltage side of these facilities. These facilities
- 16 are really an extension of our distribution system
- 17 all the way into the facility all the way up to the
- 18 inverter or the step-up transformer that's inside
- 19 the facility.
- 20 Anything that goes on on that part of
- 21 the facility has a direct impact on the
- 22 distribution system, so it's essentially just an
- 23 extension of the distribution system. So we felt
- 24 like it was very important that we, you know, do
- 25 these inspections.

- 1 But the other more proactive thing
- 2 we've done is we now ask, we've posted, and we've
- 3 required all these facilities to follow the same
- 4 construction specifications that we use to
- 5 construct our own facilities. And that's helping a
- 6 lot with that, but it was just another example of
- 7 what I was calling kind of a wake-up call, that
- 8 these facilities do have an impact, you know, on
- 9 the distribution system and other customers.
- 10 COMMISSIONER FLEMING: And there's been
- 11 talk along the way of needing installers to be
- 12 certified. Has anything moved forward on that
- 13 front?
- MR. FREEMAN: I don't think so, at
- 15 least in South Carolina, North Carolina. I know in
- 16 Florida they do require, you know, a certification.
- 17 But that's generally been focused more on the
- installers, the rooftop installers, who are
- 19 installing essentially solar on roofs.
- 20 You know, these larger utility scale
- 21 projects are generally relying either on the county
- 22 inspector or others to inspect the facility, but
- 23 yet they're not really trained or familiar with
- 24 these facilities. So that's why, you know, we
- 25 provide our own inspection and we use an outside

- 1 contractor, you know, registered engineers to do
- 2 that inspection work.
- 3 COMMISSIONER FLEMING: And then with
- 4 the -- you think the legislation in North Carolina
- 5 will really take care of the citing issues for QF's
- 6 so that you wouldn't have the same situation you
- 7 had in Olanta so that the citing process would be
- 8 more --
- 9 MR. BREITSCHWERDT: In part.
- 10 COMMISSIONER FLEMING: -- controlled, I
- 11 guess I'm saying.
- MR. BREITSCHWERDT: Yes, ma'am.
- 13 There's two parts. One --
- 14 COMMISSIONER FLEMING: Or managed.
- 15 MR. BREITSCHWERDT: I think that's what
- 16 the legislation and what Duke is trying to solve
- 17 for in implementing the legislation. There is
- 18 still the opportunity for a qualified facility, a
- 19 solar project that goes and registers and says, I
- 20 want to sell to you, Duke, under either the
- 21 standard offer or the large negotiated contract to
- 22 cite wherever they want. They would be obligated
- 23 to pay for the upgrades to the grid to interconnect
- 24 them.
- 25 I think what the RFP process, the CPRE

- 1 program is trying to solve for, is for Duke to
- 2 identify where on its grid projects can
- 3 interconnect largely the transmission system,
- 4 whether or not they're going to be constrained and
- 5 can do so more cost effectively.
- 6 And so I think it will certainly
- 7 improve the situation we have now where you have a
- 8 lot of distributed energy projects from the
- 9 distribution system, but they still have the right
- 10 to interconnect to that distribution system, they
- 11 just have to pay for the upgrades to do so, but
- 12 that's certainly an objective of the legislation.
- 13 COMMISSIONER FLEMING: Okay. And also
- 14 I wanted to ask about the moving from
- 15 administrative cost to marketplace cost. Could you
- 16 talk a little bit more about that in a vertically
- 17 integrated state?
- 18 MR. BREITSCHWERDT: Sure. So I think
- 19 when I'm using market in a vertically integrated
- 20 state, what I'm saying is what is the -- what is
- 21 the market price that Duke can procure the solar
- 22 for. And that's derived through a competitive
- 23 process.
- 24 You issue an RFP. You say all of the
- 25 QF's that want to bid into this competitive process

- 1 can put their best bid in. They can say, I'll
- 2 build a 75 megawatt solar project for whatever the
- 3 price is and then they compete. And so that
- 4 determines the market price.
- 5 And so it's an alternative way to
- 6 determine what the facility's cost is that's going
- 7 to be ultimately avoided versus an administratively
- 8 established forecasted rate, which is what
- 9 Mr. Snider would do through his innovative resource
- 10 planning process to forecast out what the likely
- 11 cost of energy and capacity is or in that long
- 12 term. So this RFP process in a sense guarantees
- 13 you're getting the least cost solar resources
- 14 delivering the system.
- 15 COMMISSIONER FLEMING: And what does it
- 16 take to move to that type of cost?
- MR. BREITSCHWERDT: In -- well --
- 18 COMMISSIONER FLEMING: Does it take
- 19 legislation I guess is what I'm asking or --
- 20 MR. BREITSCHWERDT: No, ma'am, I don't
- 21 believe it takes legislation. I think in addition
- 22 to offering an administratively established of what
- 23 costs were to exist today and which is the
- 24 preferable requirement what NARUC is advocating for
- 25 is all these regulations, but you certainly can

- 1 have multiple programs, one that's competitive and
- 2 one administratively established.
- 3 But I think where the company's current
- 4 QF administratively established framework today is
- 5 the longer term price forecast are sufficiently
- 6 risky that they are not contracting out into the
- 7 future. And so to meet QF's objectives of longer
- 8 term contracts, that could be done through a
- 9 competitive process that allows them to succeed in
- 10 delivering the least cost resource as an
- 11 alternative to the administratively established
- 12 framework.
- 13 COMMISSIONER FLEMING: And that would
- 14 be what you'd follow through like at the end of the
- 15 5-year that you're recommending, you would
- 16 recommend just the reevaluation of what the market
- is calling for to establish the terms of?
- 18 MR. BREITSCHWERDT: Sure. That's
- 19 correct. The QF always has the right to sell at
- 20 the end of that 5-year term under this Mr. Snider
- 21 said an ever green right under PURPA to sell their
- 22 power to the interconnect utility. And it's just
- 23 how you determine that price at the end of the
- 24 term, whether it's administratively or through a
- 25 competitive process.

- 1 COMMISSIONER FLEMING: Okay. Thank
- 2 you.
- 3 CHAIRMAN WHITFIELD: Thank you,
- 4 Commissioner Fleming.
- 5 Commissioner Bockman, did you have
- 6 anything?
- 7 COMMISSIONER BOCKMAN: At the risk of
- 8 prolonging this, just a couple of simple questions.
- 9 Would it be the company's preference that something
- 10 like House Bill 589 in North Carolina be adopted
- 11 here?
- MR. SNIDER: Yeah, I think the
- 13 answer -- the short answer is yes. I think what
- 14 we've tried to illustrate today is that from both a
- 15 case and economic benefit for customers from a risk
- 16 perspective that competitively procured as
- 17 Mr. Breitschwerdt just mentioned, ensures a lower
- 18 cost for consumers. It gives you control on
- 19 volume. It allows you to assess customer need in
- 20 market conditions at that time.
- 21 And as I mentioned in my presentation,
- 22 if you -- if we continue to see declining costs of
- 23 solar, your hope is that these future competitive
- 24 procurements will result in ever reduced cost for
- 25 solar production across time with improvements in

- 1 technology as opposed to an administratively
- 2 established rate that we just spoke about, so both
- 3 are viable.
- 4 COMMISSIONER BOCKMAN: That would be
- 5 perhaps a starting point for your collaborative
- 6 discussions and whatever may end up here
- 7 legislatively?
- 8 MR. SNIDER: I believe so, yes.
- 9 COMMISSIONER BOCKMAN:
- 10 Mr. Breitschwerdt, what's the role of the North
- 11 Carolina Utilities Commission under H 589?
- MR. BREITSCHWERDT: They are
- 13 responsible for implementing the various programs
- 14 that were established similar to you all's role
- 15 under Act 236 of implementing the programs that
- 16 were approved in that legislative package. So
- 17 there was a rulemaking for the competitive
- 18 procurement program. There is a recent order
- 19 issued to approve the quidelines. And so they are
- 20 essentially setting the framework that then the
- 21 Duke utilities will go forward and administer the
- 22 RFP. There's actually an independent
- 23 administrator, so a third party who has been
- 24 selected by the Commission to oversee the RFP
- 25 process where the -- this renewable generation will

- 1 be procured.
- 2 COMMISSIONER BOCKMAN: Thank you,
- 3 gentlemen. And once again, I would echo the
- 4 remarks of the other Commissioners to appreciate
- 5 your appearance here today for us.
- 6 CHAIRMAN WHITFIELD: Thank you,
- 7 Commissioner Bockman.
- 8 I believe -- I think that does it for
- 9 Commissioner questions. I have a lot of questions
- 10 that you had sparked my interest in. In the sake
- 11 of time and the fact that a few of them have been
- 12 asked, I'm going to try to whittle this down to
- 13 just a few.
- 14 And, Mr. Freeman, they're going to
- 15 mainly be directed at you. And to save time,
- 16 Frank, you'll get one from -- Mr. Ellerbe, excuse
- 17 me, you'll get one too at the end right quick.
- But, Mr. Freeman, specifically I'm
- 19 going to dive in the part of your presentation on
- 20 specifically the Campbell's Soup situation. We're
- 21 talking about Campbell's Soup in the DEP, Duke
- 22 Energy Progress territory.
- MR. FREEMAN: Right.
- 24 CHAIRMAN WHITFIELD: First of all, how
- 25 many megawatts was that project?

```
1 MR. FREEMAN: That was a 20 megawatt
```

- 2 facility.
- 3 CHAIRMAN WHITFIELD: Okay. When you --
- 4 until you got into your I guess Pages 8 and 9, I
- 5 was thinking some of the issue might have been
- 6 the -- until I realized you were talking about a
- 7 megawatt project that long, I was thinking that
- 8 some of the intermittency was harming the
- 9 industrial load of a customer the size of
- 10 Campbell's Soup, but now I clearly see what you're
- 11 talking about and citing it as being too big and in
- 12 the wrong place. I'm not going to go down that
- 13 path because Commissioner Howard already has.
- But with it being 20 megawatt, I do
- 15 have another specific question. You talk about 11
- 16 million dollars in grid upgrades. And I think
- 17 you've kind of generally answered a question he had
- 18 about upgrades, but specifically in this matter who
- 19 paid the 11 million dollars in upgrades?
- MR. FREEMAN: That's a good question.
- 21 You know, those upgrades are just being completed
- 22 now and, you know, for now, until we have a rate
- 23 case, and I'm not -- I mean, I'm not a rate expert
- 24 at all, but --
- 25 CHAIRMAN WHITFIELD: And we're not in a

- 1 rate case either, so go ahead.
- 2 MR. FREEMAN: Right. So Duke is not --
- 3 I mean, Duke is paying for those upgrades. In
- 4 hindsight, if we had the appropriate study
- 5 methodology in place, we would have recognized
- 6 those upgrades ahead of time and we would have been
- 7 asking that developer to pay those upgrade costs.
- 8 So that's kind of what I would call the unintended
- 9 consequence of not doing a thorough and adequate
- 10 job up front.
- 11 CHAIRMAN WHITFIELD: As you told
- 12 Commissioner Fleming, you didn't inspect prior --
- 13 you did not inspect prior is what you told --
- MR. FREEMAN: Well, there's two
- 15 components. There's the study process that you do
- 16 through modeling before you even begin any
- 17 construction, before you even approve the
- 18 interconnection. So that was what we recognized in
- 19 that case, the study process did not identify the
- 20 impacts on the grid. The inspection process is
- 21 after the facility has been completed and you're
- 22 looking at construction, you know, quality, and
- 23 following, you know, the safety, you know,
- 24 requirements and actually building the facility as
- 25 it was proposed to us.

- 1 CHAIRMAN WHITFIELD: Okay. I do have
- 2 one or two more for you real quickly, but I do see
- 3 Miss Dulin has risen to the podium, so --
- 4 MS. DULIN: Mr. Chairman, if you don't
- 5 mind, could you ask Mr. Freeman your question about
- 6 the location of the facility?
- 7 CHAIRMAN WHITFIELD: I asked him if he
- 8 was referring to the Campbell's Soup facility in
- 9 Sumter, South Carolina, is that right?
- 10 MR. FREEMAN: Maybe a clarification. I
- 11 referenced two different facilities. So the first
- 12 question was tied to Campbell's Soup, and that was
- 13 a 20 megawatt facility, but when you asked --
- MR. ELLERBE: Where is that facility?
- MR. FREEMAN: It's in Maxton.
- MR. ELLERBE: It's not the one in
- 17 Sumter.
- MR. FREEMAN: Oh, I'm sorry.
- 19 CHAIRMAN WHITFIELD: I saw the Olanta.
- 20 I'll get to that in a minute. So we're talking in
- 21 North Carolina now?
- MR. FREEMAN: Yes, sir.
- 23 CHAIRMAN WHITFIELD: Okay.
- MR. FREEMAN: I'm sorry. Maxton, North
- 25 Carolina.

- 1 CHAIRMAN WHITFIELD: Thank you.
- MS. DULIN: Thank you for the
- 3 clarification.
- 4 CHAIRMAN WHITFIELD: And thank you for
- 5 bringing that to our attention. So we're talking
- 6 Maxton, North Carolina, just across the line in
- 7 North Carolina.
- 8 To move forward. And when I saw the
- 9 Olanta substation, I'm still thinking that below
- 10 the Sumter Pee Dee area over there, and I want to
- 11 move into that in just a minute on the Olanta
- 12 substation. And I'm not going to go where
- 13 Commissioner Howard went on the transmission lines,
- 14 but back to the -- get away from the transmission
- 15 lines a minute. Let's get into the substation.
- I noticed on your map how many projects
- 17 you have as you said in the 5-mile radius of this
- 18 substation. And the one that's probably closest in
- 19 proximity was a 15 megawatt project. You said that
- 20 one was holding up -- that that was first and kind
- 21 of holding up the other things from going forward.
- 22 My question again to you is back to a
- 23 cost standard. How much would it cost to upgrade
- 24 that Olanta substation to move forward with these
- 25 projects? In a sense you have all this going on in

- 1 a rural area that can't handle it. How much would
- 2 the upgrades cost for that substation or do you
- 3 know?
- 4 MR. FREEMAN: Well, let me kind of
- 5 answer it a couple ways. The 15 megawatt project
- 6 by itself, being the first project to connect up to
- 7 that substation might not -- might not cost
- 8 anything to upgrade the substation. The challenge
- 9 with that project is the distribution lines
- 10 themselves and the circuit can't accommodate the 15
- 11 megawatts.
- 12 So at 15 megawatts, that facility, we
- 13 need to identify a different route to get that
- 14 power back to the substation, okay? So that --
- 15 hopefully that answered the question.
- 16 CHAIRMAN WHITFIELD: That's where you
- 17 get into the 5 mile transmission lines that
- 18 Commissioner Howard was asking about?
- MR. FREEMAN: Well, that was the
- 20 example of -- I was trying to look at the five
- 21 projects that are in the upper left-hand corner.
- 22 CHAIRMAN WHITFIELD: Oh. Correct.
- 23 MR. FREEMAN: The distribution system
- 24 cannot accommodate the 50 megawatts no matter what
- 25 size wire, what kind of upgrades you make there.

- 1 But your other question would be
- 2 there's 146 megawatts of projects in total there.
- 3 The substation itself, we refer to it as a 15, 20,
- 4 25 MVA transformer. That transformer is only about
- 5 one-eighth the size necessary to accommodate those
- 6 projects.
- 7 CHAIRMAN WHITFIELD: Then you need the
- 8 step-up transformer?
- 9 MR. FREEMAN: Well, there isn't a -- we
- 10 don't have a distribution substation that's even
- 11 close to that size. I mean, you just -- I mean,
- 12 the infrastructure work there if I'm going to take
- 13 a guess to upgrade the substation to accommodate,
- 14 you know, that amount of generation, I'm just
- 15 pulling a number out, but just to give you a sense
- 16 would be tens of millions of dollars.
- 17 And then you've got the transmission,
- 18 you know, grid itself that needs to be upgraded. I
- 19 mean, you could -- I'm just quessing. I mean, you
- 20 could spend 50 or a hundred million dollars trying
- 21 to upgrade the system enough to accommodate the 146
- 22 megawatts in that particular location. That's just
- 23 a uninformed wild guess to be clear. But the point
- 24 is --
- 25 CHAIRMAN WHITFIELD: Say that number

- 1 again.
- 2 MR. FREEMAN: I said anywhere from, you
- 3 know, 50 to a hundred million dollars. I mean,
- 4 that's my point about there's a point where, you
- 5 know, the size of the project and the location of
- 6 the project and the upgrades that are required to
- 7 accommodate that project just make the project, you
- 8 know, kind of uneconomical to move forward.
- 9 And that does tie in to what we're
- 10 trying to do with House Bill 589 in the competitive
- 11 procurement process, is identify location where you
- 12 minimize those upgrade costs going forward.
- 13 CHAIRMAN WHITFIELD: And I see where
- 14 you were referring to because I was looking at
- 15 another line that you -- the line you were
- 16 referring to is at the top left corner, I believe,
- 17 of that Page 10 is what you were referring to.
- 18 MR. FREEMAN: Yeah, the pink line is
- 19 the distribution circuit up in that area. And then
- 20 the blue line that kind of comes down through the
- 21 middle to the substation, that's the transmission
- 22 line.
- 23 CHAIRMAN WHITFIELD: Okay. The blue
- 24 with the kind of railroad-looking --
- MR. FREEMAN: Right.

- 1 CHAIRMAN WHITFIELD: Right. Got it.
- 2 Well, I do have some other questions, but this has
- 3 been really informative. I'm going to close with a
- 4 question to Mr. Ellerbe talking about the -- you
- 5 talked about the company's position, of course, in
- 6 this. And as Commissioner Hamilton said, we're
- 7 hearing kind of opposite today.
- But as you know, we're -- even with all
- 9 the collaborative efforts of Act 236, you know some
- 10 of the discussion has been around South Carolina
- 11 hitting the caps, hitting the limits on those.
- 12 What is the company's position if you're able to
- 13 say at this time on how to deal with hitting those
- 14 ceilings and hitting those limits placed by 236?
- MR. SNIDER: Okay. I'm never shy to
- 16 speak since everyone's looking at each other. I
- 17 would say, you know, just more generally pace is
- 18 very important as we spoke about in all of this.
- 19 And so what you're really talking about is changing
- 20 the pace and I think it needs careful
- 21 consideration.
- 22 I'm certainly not the person to say
- 23 what our official position is on that very specific
- 24 issue, but it does just highlight again, you know,
- 25 236 had caps for a specific reason which it

- 1 recognized that there is a pacing issue that needs
- 2 to be adhered to. And so I think it will take
- 3 careful consideration, and I don't have the
- 4 company's official position on that, on that issue.
- 5 MR. FREEMAN: I think the other point
- 6 about the caps is, you know, the deeper the
- 7 penetration goes, the more risk you've got cost
- 8 impacts to other customers. So from a net metering
- 9 cap perspective, from a rebate cap perspective. I
- 10 mean, those rebates, you know, pays those rebates,
- 11 but those costs of those rebates are recovered
- 12 through, you know, Act 236, so I think it's kind of
- 13 a -- I'll call it maybe a cost control kind of
- 14 mechanism, if that makes sense.
- 15 CHAIRMAN WHITFIELD: Well, thank you.
- 16 I don't have anything further and I don't believe
- 17 any of the other Commissioners do.
- 18 Anything further from ORS,
- 19 Miss Pittman?
- MS. PITTMAN: Nothing from ORS.
- 21 CHAIRMAN WHITFIELD: Does the company
- 22 have anything else, Miss Dulin?
- MS. DULIN: Nothing further. Thank you
- 24 for your time very much.
- 25 CHAIRMAN WHITFIELD: Well, if not,

```
thank you all for your presentation. Very
1
     informative. We appreciate you bringing this to
2
3
     our attention and this allowable ex parte briefing
     is adjourned.
 4
                  (WHEREUPON, the proceedings concluded
5
6
     at 12:49 PM.)
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
```

1	CERTIFICATE OF REPORTER
2	I, Terri L. Brusseau, Registered
3	Professional Reporter and Notary Public for the
4	State of South Carolina at Large, do hereby certify
5	that the foregoing transcript is a true, accurate,
6	and complete record.
7	I further certify that I am neither related
8	to nor counsel for any party to the cause pending
9	or interested in the events thereof.
10	Witness my hand, I have hereunto affixed my
11	official seal this 1st day of April, 2018 at
12	Charleston, Charleston County, South Carolina.
13	
14	
15	
16	
17	
18	
19	<u>Orígínal Sígned</u> Terri L. Brusseau, RPR, CRR
20	My Commission expires April 5, 2026.
21	
22	
23	
24	
25	